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Electrical circuit analysis-I I-II Electrical & electronics 

Engineering 
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C OURSE OUTCOMES: Students are able to 

 

1. Various electrical networks in presence of active and passive elements.Electrical networks with network topology 

concepts(K1) 

2. Any magnetic circuit with various dot conventions (K5) 

3. Understand Any R, L, C network with sinusoidal excitation (K2) 

4. Analyze  Any R, L, network with variation of any one of the parameters i.e., R, L, C and f. (K4)  

5. Determine Electrical networks by using principles of network theorems.(K3)  
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No. 
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of   

periods 
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Refere 

nce 

Delivery 
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1 

CO1: Various 

electrical networks 
in presence of 

active and passive 

elements.Electrical 

networks with 

network topology 

concepts 

 

Introduction to Electrical Circuits  

 

 

 

15 

 

 

 

 

T1,T

3, R7 

 
Chalk & 

Talk, PPT, 

Active 

Learnin

g 

& Tutorial 

1.1 Basic Concepts of passive elements of 
R, L, C and their V-I relations  

2 

1.2 Sources (dependent and independent), 

Kirchhoff’s laws 
2 

1.3 Network reduction techniques (series, 

parallel, series - parallel, star-to-delta 

and delta-to-star transformation). 

2 

1.4  
source transformation technique 

      2 

1.5 nodal analysis and mesh analysis to DC 

networks with dependent and 

independent voltage and current sources  
 

2 

1.6 Star-Delta transformation technique 
2 

1.7 delta-to-star transformation       2 

 
1.8 Problems on above topics 1 

 

 

 

 

2 

CO2: Any magnetic 

circuit with various 

dot conventions 

 Magnetic Circuits    

 

 

   12 

 

 

 

 

T1,T3, 

R7 

 

Chalk & 

Talk, Active 

Learning & 

Tutorial 

2.1 Basic definition of MMF, flux and 
reluctance, 

2 

2.2 analogy between electrical and 

magnetic circuits  
2 

2.3 Faraday’s laws of electromagnetic 
induction 

2 

2.4 concept of self and mutual inductance, 

Dot convention 
2 

2.5 coefficient of coupling and composite 2 



magnetic circuit 

2.6 analysis of series and parallel 

magnetic circuits. 

2 

 

 

 

 

 

3 

 

C O3: 
Understand Any R, 

L, C network with 

sinusoidal excitation 

Single Phase A.C Systems  

 

 

   

 

   12 

 

 

 

 

 

 

 

T1,T3, 

R7 

 

 

 

 

Chalk & 

Talk, 

Active 

Learning & 

Tutorial 

3.1 Periodic waveforms (determination 
of rms, average value and form 
factor), concept of phasor, phase 
angle and phase difference 

 

2 

3.2 waveforms and phasor diagrams for 

lagging, leading networks 
2 

3.3 complex and polar forms of 

representations. node and mesh 

analysis. 

2 

3.4 Steady state analysis of R, L and C 

circuits, power factor and its 

significance 

2 

3.5 real, reactive and apparent power, 

waveform of instantaneous power 

and complex power. 

2 

3.6 Problems on above topics 2 

 

 

 

 

4 

 

CO4: Analyze  

Any R, L, network 

with variation of any 

one of the 

parameters i.e., R, L, 

C and f  
 

 

 

Resonance - Locus Diagrams  

     

 

 

 

 

    8 

 

 

 

 

T1,T3, 

R7 

 

 

 

 

 

 

 

 

 

Chalk & 

Talk, 

Active 

Learning 

& 

Tutorial 

 

4.1 

 

 

 
series and parallel resonance 

 

     2 

 

 

 

4.2 

 

 
selectively band width and Quality 

factor  

     2 

4.3 locus diagram- RL, RC, RLC with R, 

L and C variables. 
    2 

4.4 Problems on above topics      2 

 

 

 

5 

CO5: 

 Determine 

Electrical networks 

by using principles of 

network theorems  

 

5.1 

 

Network theorems (DC & AC 

Excitations)  

Superposition theorem 

2      

 

 

  

  12 

    

 

 

  

 

T3,  R7 

Chalk & 

Talk, 

Active 

Learning 

& 

Tutorial 

5.2 

 

 Thevenin’s theorem, Norton’s 

theorem 
2 

5.3 Maximum Power Transfer theorem 2 

5.4 Reciprocity theorem, Millman’s 

theorem and compensation theorem.  
2 

5.5 Design of Filters 2 

5.6 Problems on above topics 2 

 TOTAL 59   
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VSM COLLEGE OF ENGINEERING 

 RAMACHANDRAPURAM 

I Year-II Semester                                                                                                 ELECTRICAL CIRCUIT ANALYSIS-I 

UNIT-I  

Introduction to Electrical Circuits  
Basic Concepts of passive elements of R, L, C and their V-I relations, Sources (dependent and 

independent), Kirchhoff’s laws, Network reduction techniques (series, parallel, series - parallel, star-

to-delta and delta-to-star transformation), source transformation technique, nodal analysis and mesh 

analysis to DC networks with dependent and independent voltage and current sources., node and 

mesh analysis.  

UNIT-II  

Magnetic Circuits  
Basic definition of MMF, flux and reluctance, analogy between electrical and magnetic circuits, 

Faraday’s laws of electromagnetic induction – concept of self and mutual inductance, Dot convention 

– coefficient of coupling and composite magnetic circuit, analysis of series and parallel magnetic 

circuits.  

UNIT-III  

Single Phase A.C Systems  
Periodic waveforms (determination of rms, average value and form factor), concept of phasor, phase 

angle and phase difference – waveforms and phasor diagrams for lagging, leading networks, complex 

and polar forms of representations. node and mesh analysis.  

Steady state analysis of R, L and C circuits, power factor and its significance, real, reactive and 

apparent power, waveform of instantaneous power and complex power.  

UNIT-IV  

Resonance - Locus Diagrams  

series and parallel resonance, selectively band width and Quality factor, locus diagram- RL, RC, RLC 

with R, L and C variables. 

UNIT-V  

Network theorems (DC & AC Excitations)  

Superposition theorem, Thevenin’s theorem, Norton’s theorem, Maximum Power Transfer 

theorem, Reciprocity theorem, Millman’s theorem and compensation theorem. 

Text Books:  
1. Engineering Circuit Analysis by William Hayt and Jack E. Kemmerley, 6th edition  

 

McGraw Hill Company, 2012.  

2. Network Analysis: Van Valkenburg; Prentice-3rd edition, Hall of India Private Ltd, 2015.  

 

 

 

 



Introduction to Electrical Circuits 
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Introduction to Electrical Circuits : Network elements

classification, Electric charge and current, Electric energy and

potential, Resistance parameter – series and parallel

combination, Inductance parameter – series and parallel

combination, Capacitance parameter – series and parallel

combination. Energy sources: Ideal, Non-ideal, Independent and

dependent sources, Source transformation, Kirchoff ’s laws,

Mesh analysis and Nodal analysis problem solving with

resistances only including dependent sources also. (Text Books:

1,2,3, Reference Books: 3).

➢
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➢ Network Analysis – ME Van Valkenburg, Prentice Hall of

India, 3rd Edition, 2000.

Electric Circuit Analysis by Hayt and Kimmarle, TMH

TEXT BOOKS

➢
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Today’s engineering graduates are no longer employed solely
to work on the technical design aspects of engineering
problems.

Their efforts now extend beyond the creation of better
computers and communication systems etc…..

To contribute to the solution of engineering problems an
engineer must acquire many skills, one of which is a
knowledge of electric and electronic circuits analysis.

They take a fundamental understanding of various scientific
principles, combine this with practical knowledge often
expressed in mathematical terms and with little creativity
arrive at a solution.

Introduction

➢

➢

➢

➢
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➢Electric Circuit

Electric circuit can be defined as an interconnection

between components or electrical devices for the purpose

of communicating or transferring energy from one point to

another.

The components of electric circuit are always referred to as

circuit elements

➢

➢
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Circuit element definition

It is important to differentiate between the physical device

itself and the mathematical model which we will use to

analyze its behavior in a circuit. The model is only an

approximation.

Expression use the circuit element to refer to the

mathematical model.

All simple circuit elements that we will consider can be

classified according to the relationship of the current

through the element to the voltage across the element.

Dependant sources are used a great deal in electronics to

model both DC and AC behavior of transistors, especially

in amplifier circuits.

➢

➢

➢

➢

➢
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➢The derived unit commonly used in electric circuit theory

73/30/2020



➢ Electric Charge

Electric charge is an electrical property of the atomic particles

of which matter consists measured in coulombs (C).

Electric charge create electric field of force.

The charge Q on one electron is negative and equal in

magnitude to which is called as electronic

charge.

➢

➢

➢

3/30/2020 8

C1910602.1 −

➢ CURRENT

Current is defined as the movement of charge in a specified

direction.

Electric current i = dq/dt.

An Ampere = Coulomb per Second

➢

➢

➢



i

t

Direct current Alternating current

➢ A direct current (dc) is a current that remains constant with

time.

➢ An alternating current (ac) is a current that varies

sinusoidally with time. (reverse direction).

➢Types Of  Current

3/30/2020 9



A conductor has a constant current of 5 A.

How many electrons pass a fixed point on the conductor in

one minute?

➢ Example 

➢

➢

➢ Solution

➢ Total no. of  charges, pass in 1 min is given by

5 A = (5 C/s)(60 s/min) = 300 C/min

min
electrons 1087.1

C/electron 10602.1

C/min  300 21

19
x

x
=

−
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➢ Voltage is the electric pressure or force that causes current.

➢ It is a potential energy difference between two points.

➢ It is also known as an electromotive force (EMF).

➢ A Volt = Joule per Second

➢ Voltage

3/30/2020 11

❖ Resistance is the opposition a material offers to current.

➢ Resistance is determined by

❖ Type of  material (resistivity)

❖ Temperature of  material

❖ Cross-sectional area

❖ Length of  material

➢ Resistance



➢ Example:

❖ Resistance  = 
Resistivity x length

area
R =  

KL

A

❖R =  
KL

A
=  =  5 W

1.4 x10-6 W· cm  x  5 x104 cm

2 cm2

➢ Resistance Relationships

3/30/2020 12

➢ ohm = Volt per Ampere



➢ Power is the rate of  using energy or doing work.    

❖ Work (W): consists of  a force moving through a distance.

❖ Energy (W): is the capacity to do work.

❖ Joule (J) : is the base unit for both energy and work.

❖ A watt = Joule per second.

❖ Power = 200 Watts

➢ POWER

133/30/2020



Active Element And Passive Element

➢ Active Element– elements capable of generating electrical

energy.

❖Resistor (dissipates energy)

❖Capacitor and Inductor (can store or release energy)

❖Current source

❖Voltage source

➢ Passive Element– elements not capable of generating

electrical energy.

3/30/2020 14



Independent Source

Voltage Source maintains a specified voltage between its

terminals but has no control on the current passing through

it. The symbol of the independent voltage source is a plus-

minus sign enclosed by a circle.

3/30/2020 15
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Current Source maintains a specified current through its

terminals but has no control on the voltage across its

terminals. The symbol of the independent current source is

an arrow enclosed by a circle.

3/30/2020 16

➢



Dependent Source

The voltage source has a specified voltage between its

terminals but it is dependable on some other variable

defined somewhere in the circuit.

The symbol for the dependent voltage source is a plus-

minus sign enclosed by a diamond shape.

xs iV =

3/30/2020 17

➢

➢



This kind of current source has a specified current between

its terminals but it is dependent on some other variable

defined somewhere in the circuit.

The symbol for the dependent current source is an arrow

enclosed by a diamond shape.

xs Vi =

3/30/2020 18
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➢ Controlled sources

Current controlled current source  :
1

2

i

i
=Current ratio

Voltage controlled current source  :
2

1
m

i
g

v
=Transconductance

Voltage controlled voltage source  : 2

1

v

v
 =Voltage ratio

Current controlled voltage source  : 2

1
m

v
r

i
=Transresistance



Resistor 

R
UNIT: Ohm (Ω)

Resistor is passive element

that dissipates electrical

energy.

Linear resistor is the resistor

that obeys Ohm’s law.

➢ Circuit symbol of  Resistor

3/30/2020 20



➢ Resistor colour code
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➢ Resistor Colour Codes

Yellow

4 ±10 %

Silver

7

Violet

00

Red

3/30/2020 22



➢Capacitor

C
UNIT: Farad (F)

❖Electrical component that consists of two conductors
separated by an insulator or dielectric material.

❖Its behavior based on phenomenon associated with electric
fields, which the source is voltage.

❖A time-varying electric fields produce a current flow in the
space occupied by the fields.

❖Capacitance is the circuit parameter which relates the
displacement current to the voltage.

3/30/2020 23



➢ A capacitor with an applied voltage

Plates – aluminum foil

Dielectric – air/ceramic/paper/mica

Plates – aluminum foil

Dielectric – air/ceramic/paper/mica
3/30/2020 24



(a) Fixed capacitor (b) Variable capacitor

➢ Circuit symbols for capacitors

3/30/2020 25



❖ The amount of charge stored, q = CV.

❖ C is capacitance in Farad, ratio of the charge on one

plate to the voltage difference between the plates.

❖ But it does not depend on q or V but capacitor’s physical

dimensions i.e.,

d

A
C


=

= permeability of  dielectric in Wb/Am

A = surface area of  plates in m2

d = distance between the plates m         

➢ Circuit parameters

3/30/2020 26



L
UNIT: Henry (H)

❖ Electrical component that opposes any change in
electrical current.

❖ Composed of a coil or wire wound around a non-
magnetic core/magnetic core.

❖ Its behavior based on phenomenon associated with
magnetic fields, which the source is current.

❖ A time-varying magnetic fields induce voltage in any
conductor linked by the fields.

❖ Inductance is the circuit parameter which relates the
induced voltage to the current.

➢ Inductor

3/30/2020 27



Typical form of  an inductor

3/30/2020 28



OHM’S LAW

➢ Georg Simon Ohm (1787-1854) formulated the

relationships among voltage, current, and resistance as

follows:

➢ The current in a circuit is directly proportional to the

applied voltage and inversely proportional to the

resistance of the circuit.

IRV =

3/30/2020 29



➢ Calculating Current

I = V
R

=
24 V

1200 KΩ
= 0.02 A = 20 mA

R

1.2 kW

Vs =

24 V

3/30/2020 30



R =
V
I

= 12 V
0.02 A

= 600 OHM

R

Vs =

12 V

A
0.02 A

➢ Calculating Resistance
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V = IR = 0.025 A  x  470 W = 11.75 V

R

470 W

Vs = 

?

A
0.025 A

➢ Calculating Voltage
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P = IV = 0.25 A  x  67.5 V = 16.9 W

P = I2R = 0.25 A  x  0.25 A  x  270 W = 16.9 W

P = V2/R = (67.5 V  x  67.5 V) / 270 W  = 16.9 W

270  W

0.25 A
V

67.5 V

A

➢ Calculating Power
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➢ Gustav Robert Kirchhoff (1824 – 1887)

➢ Models relationship between:

❖ circuit element and currents (KCL)

❖ circuit element and voltages (KVL)

➢ He introduces two laws:

❖ Kirchhoff Current Law (KCL)

❖ Kirchhoff Voltage Law (KVL)

➢ KIRCHHOFF’S Law

3/30/2020 34

http://physics.hallym.ac.kr/reference/physicist/jpeg/Kirchhoff.jpeg


❖ Current entering node = current exiting

❖ Convention: +i is exit.ing, -i is entering

❖ For any circuit node:

 = 0i

➢ Kirchhoff ’s Current Law (KCL)

3/30/2020 35



Kirchhoff’s Current Law (KCL) states that the 
algebraic sum of current entering a node must 

be equal to that of leaving the same node.

3/30/2020 36

➢ Kirchhoff’s Current Law (KCL)



❖ voltage increases = voltage decreases

❖ Convention: hit minus (-) side first, write 
negative

❖ For any circuit loop:

 = 0v

➢ Kirchhoff ’s Voltage Law (KVL)

3/30/2020 37



Kirchhoff’s Voltage Law (KVL)

Kirchhoff ’s Voltage Law states that the algebraic sum of

voltage drop in a loop must be equal to that of voltage

rise in the same loop.

Stated it in a different way is that the algebraic sum of all

voltages around a loop must be zero.

3/30/2020 38
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Example 

➢ Applying the KVL equation for the circuit of  the figure 
below.

va-v1-vb-v2-v3 = 0

V1 = IR1 v2 = IR2  v3 = IR3 

 va-vb = I(R1 + R2 + R3)

321 RRR

vv
I ba

++

−
=
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❖ Resistor below is arranged in series connection:

1R

SV
−

+

2R NRI

−+ 1V −+ NV−+ 2V

eqR
SV

−

+

I

Req = R1 + R2 + ……….+ RN

❖The equivalent resistance for any number of resistors in

series connection is the sum of each individual resistor.

➢ Series And Parallel Circuit

3/30/2020 40



Current in series circuit is the same as 
in each circuit element.

NIIII === 21

Voltage (VT) in series circuit is the total 
voltage of each element circuit.

NT VVVV +++= ..21

➢ Current in Series Circuit

3/30/2020 41

➢ Voltage In Series Circuit



Resistor below is arranged in parallel connection:

1RSI
2R NR

1I

−

+

V

eqR

2I
NI

−

+

V
SI

The equivalent resistance for any number of 
resistors in parallel connection is obtained by 

taking the reciprocal of the sum of the reciprocal of 
each single resistor in the circuit. 

3/30/2020 42



Equivalent resistance:

Neq RRRR

1
............

111

21

+++=

N

eq

RRR

R
1........11

1

21

+++
=
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For the circuit which have two resistors in parallel 
connection: 

21 RRReq =

21

21

21

11

1

RR

RR

RR

Req

+
=

+
=
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❖ Current in series circuit is equal to the total 
current for each element circuit

NIIII +++= ..21

❖ Voltage (VT) in series circuit is the same as for 
each element circuit

NT VVVV === 21
3/30/2020 45

➢ Current In Parallel Circuit

➢ Voltage In Parallel Circuit



Whenever voltage has to be divided among 
resistors in series use voltage divider rule 

principle.
3/30/2020 46

➢ Voltage Divider



➢Voltage at resistor R2: 

IRV 22 =
21 RR

V
I

+
=












+
=











+
=

21

2

21

22
RR

R
V

RR

V
RV
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➢ By applying Ohm’s Law: 



1R 2R

1I

V

2I

_

+

I

Whenever current has to be divided among 
resistors in parallel, use current divider rule 

principle.

3/30/2020 48

➢ Current Divider














+
===

21

21
2211

RR

RR
IRIRIV

49

➢ By applying Ohm’s Law:

3/30/2020



I
RR

R
I

I
RR

R
I












+
=












+
=

21

1
2

21

2
1

So, to find current, I1 and I2 :
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➢Mesh – the smallest loop around a subset of components 
in a circuit

➢Technique to find voltage drops around a loop using the 
currents that flow within the loop, Kirchoff’s Voltage Law, 
and Ohm’s Law.

➢Multiple meshes are defined so that every component in the 
circuit belongs to one or more meshes

3/30/2020 51

Mesh Analysis



3/30/2020 52

➢Steps in Mesh Analysis

1. Identify all of the meshes in the circuit

2. Label the currents flowing in each mesh

3. Label the voltage across each component in the circuit

4. Write the voltage loop equations using Kirchoff ’s Voltage Law.

5. Use Ohm’s Law to relate the voltage drops across each component to the 

sum of the currents flowing through them.

6. Solve for the mesh currents

7. Once the mesh currents are known, calculate the voltage across all of 

the components.



i1

i2

Vin
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Step 3
 Label the voltage across each component in the circuit

i1

i2

+ 
V1

_

Vin

+ 
V3

_

+ 
V5

_

+ 
V6

_

+  V2 - +  V4 -

3/30/2020 54



12V

3/30/2020 55

0

0

543

6321

=++−

=+++−−

VVV

VVVVVin



❖None of the mesh currents should be larger than the 
current that flows through the equivalent resistor in series 
with the 12V supply.

( ) 

ARVI

kR

kkkkkkR

eqeq

eq

eq

74012

2.16

136584

==

W=

W+W+WW+W+W=
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➢Check



❖Technique to find currents at a node using Ohm’s Law and 

the potential differences betweens nodes.

3/30/2020 57

➢Steps in Nodal Analysis

1. Pick one node as a reference node

2. Label the voltage at the other nodes

3. Label the currents flowing through each of  the 

components in the circuit

4. Use Kirchoff ’s Current Law

5. Use Ohm’s Law to relate the voltages at each node to the 

currents flowing in and out of  them.

6. Solve for the node voltage

7. Once the node voltages are known, calculate the 

currents.

➢ Nodal Analysis



R2 R3

R1 R4

R5

R6I1

v1 v2

+

_

v6

••

0

65

2

4

2

3

12

1
3

21

21

1

=
+

++
−

=
−

+
+

RR

V

R

V

R

VV

I
R

VV

RR

V
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v1
v2

10 W

5 W

20 W 4 A

2 A

••

Find V1 and V2.

At v1:

2
510

211 =
−

+
VVV

At v2:

6
205

212 −=+
− VVV

Eq 6.7

Eq 6.8
8
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Basic Circuits

R1

R3

I

v2
v1

+
_ R2 R4E

At V1:

I
R

VV

R

V

R

EV
=

−
++

−

3

21

2

1

1

1

At V2:

I
R

VV

R

V
−=

−
+

3

12

4

2

10
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v2
v1

6 W

4 W

10 W 5 A

+
_

10 V

• •

What do we do first?

12
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v2
v1

6 W

4 W

10 W 5 A

+
_

10 V

• •

At v1:

5
4

2101

10

1 −=
−+

+
VVV

At v2:

0
4

1102

6

2 =
−−

+
VVV

13
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V1 = -30 V,  V2 = -12 V,  I1 = -2 A



+
_

6 A

5 W

4 W

2 W

10 W

v1
v2 v3

10 V

x

x

x
x

super node

15
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When a voltage source appears between two nodes, an easy

way to handle this is to form a super node.

The Super Node encircles the voltage source and the tips of

the branches connected to the nodes.

➢

➢



+
_

6 A

5 W

4 W

2 W

10 W

v1
v2 v3

10 V

At V1 6
2

31

5

21 =
−

+
− VVVV

At super
node

0
2

13

10

3

4

2

5

12 =
−

+++
− VVVVVV

Constraint Equation

V2 – V3 =  -10
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7V1 – 2V2 – 5V3  =  60

-14V1 + 9V2 + 12V3 =  0

V2 – V3 = -10 

Solving gives:

V1 = 30 V,    V2 = 14.29 V,   V3 = 24.29 V

17
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Consider the circuit below.  We desire to solve for the node voltages
V1 and V2.

10 W

2 W

4 W

5 W

2 A

+
_10 V

5Vx

••
v1 v2

Vx
+_

In this case we have a dependent source, 5Vx, that must be reckoned
with.  Actually, there is a constraint equation of 

012 =−− VVV x

18
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Nodal Analysis with Dependent Sources.
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❖ Whenever current flows through a conductor, whether ac

or dc, a magnetic field is generated about that conductor.

❖ When time varying magnetic field generated by one loop

penetrates a second loop, a voltage is induced between

the ends of second wire.

❖ In order to distinguish this phenomenon from the

inductance, we defined more properly termed “self

inductance”, and “Mutual inductance”.

❖ There is no such device as a “Mutual Inductor”, but the

principle forms the basis for an extremely important

device – TRANSFORMER.

UNIT-II

Coupled circuits
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❖The relation between the terminal voltage and current in a

inductance

dt

tdi
Ltv

)(
)( =

❖ The physical basis for a such a current-voltage

characteristic rests upon two things

❖ The production of a magnetic flux by a current, the flux

being proportional to the current in linear conductors.

❖ The production of a voltage by the time-varying magnetic

field, the voltage being proportional to the time rate of

change of the magnetic field or the magnetic flux.



➢ Mutual Inductance
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 

v2(t) =M 21

di1(t)

dt

 

v1(t) =M12

di2 (t)

dt

The double headed arrow indicates that these inductors are coupled.

➢Mutual Inductance



❖A current entering the dotted terminal of one coil produces
an open circuit voltage with a positive voltage reference at
the dotted terminal of the second coil.

71

➢ The Dot Convention
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➢ Dot Convention: Four Cases
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 

v1 = L1
di1

dt
+M

di2

dt

v2 = L2
di2
dt

+M
di1
dt

➢ Combined Self- and Mutual-Induction Voltages



❖The assumed currents i1 and

i2 produce additive fluxes.

❖Dots may be placed either

on the upper terminal of

each coil or on the lower

terminal of each coil.

74

➢ Physical Basis for Dot Convention



Show that  V2/V1 =6.88e -j16.70◦

75

➢Example: Voltage Gain
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 

w(t) =
1

2
L1[i1(t)]

2 +
1

2
L2[i2 (t)]

2 +M i1(t)  i2(t) 

This equation implies a limit on M: 

 

M  L1L2

➢ Energy in Coupled Inductors
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 

k =
M

L1L2

❖ The coupling coefficient k measures how tightly coupled

the two inductors are:

where 0 ≤ k ≤ 1

➢ The Coupling Coefficient



Transformers have a primary 
(source side) and a secondary 
(load side).

78

➢ The Linear Transformer



❖The impedance Zin seen by the source is

79

 

Zin = Z11 −
( j)2M 2

Z22

 

Z11 = R1 + jL1

Z22 = R2 + jL2 + ZL

➢ Transformer: Reflected Impedance



80

Consider the mesh-current 

equations to show that these 

circuits are equivalent.

➢ The “T” Equivalent Network



❖In an ideal transformer, k=1 and the inductances are

assumed large in comparison to the other impedances.

❖The turns ratio a is defined as

81

 

a2 =
L2

L1
=
N2
2

N1
2

➢ The Ideal Transformer



Transformer Applications

82

Power

Electronics

Step Down

Step Up

Step Down to 
Household



Impedance matching:

Current adjustment:

Voltage adjustment:  

83

 

Zin =
ZL

a2

 

I2

I1
=
1

a

 

V2

V1
= a

➢ Transformer Applications



Example: Transformer Calculations 
Determine the average power dissipated in the 10 kΩ 

resistor.

Answer: 6.25 W

84



Example: Thévenin Equivalent
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UNIT-III
AC Fundamentals
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The majority of electrical power in the world is generated,

distributed and consumed in the form of 50 Hz or 60-Hz

sinusoidal alternating current (AC) and voltage.

It is used for household and industrial applications such as

television sets, computers, microwave ovens, electric stoves, to

the large motors used in the industry.

AC has several advantages over DC. The major advantage of

AC is the fact that it can be transformed, however, DC cannot.

➢

➢

➢
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➢ A transformer permits voltage to be stepped up or down for

the purpose of transmission. Transmission of high voltage

(in terms of kV) is that less current is required to produce

the same amount of power. Less current permits smaller

wires to be used for transmission.

➢ AC unlike DC flows first in one direction then in the

opposite direction. The most common AC waveform is a sine

(or sinusoidal) waveform. Sine waves are the signal whose

shape neither is nor altered by a linear circuit, therefore, it is

ideal as a test signal.
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➢ In discussing AC signal, it is necessary to express the

current and voltage in terms of maximum or peak values,

peak-to-peak values, effective values, average values, or

instantaneous values. Each of these values has a different

meaning and is used to describe a different amount of

current or voltage.
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➢ The correspondence mathematical form of  sinusoidal AC signal is

( ) += tVtv P cos)(
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 Example – Determine the equation of the following 
voltage signal.

From diagram:

▪ Period is 50 ms = 0.05 s

▪ Thus f = 1/T =1/0.05 = 20 Hz

▪ Peak voltage is 10 V

▪ Therefore

t

t

ftpVv

126sin10

202sin10

2sin

=

=

=




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 Phase angles

 the expressions given above assume the angle of the sine 
wave is zero at t = 0

 if this is not the case the expression is modified by 
adding the angle at t = 0
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 Phase difference

 two waveforms of the same frequency may have a 
constant phase difference

 we say that one is phase-shifted with respect to the other
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 Average value of a sine wave

 average value over one (or more) cycles is clearly zero

 however, it is often useful to know the average 
magnitude of the waveform independent of its polarity

 we can think of this as
the average value over 
half a cycle…

 … or as the average value
of the rectified signal

 

p
p

p

pav

V
V

V

VV

==

−=

=

637.0
2

cos

dsin
1

0

0












θ
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 Average value of a sine wave
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 r.m.s. value of a sine wave

 the instantaneous power (p) in a resistor is given by

 therefore the average power is given by

 where       is the mean-square voltage

R

v
p

2

=

2
v

R

v

R

v

avP

2]  of mean) (or average[ 2

==
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 While the mean-square voltage is useful, more often 
we use the square root of this quantity, namely the 
root-mean-square voltage Vrms

 where Vrms =

 we can also define Irms =

 it is relatively easy to show that

2v

2i

p
p

rms VVV == 707.0
2

1
p

p
rms III == 707.0

2
1
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Voltage and Current Values for a Sine Wave

120 V

120 V
+

100 W

100 W

Vrms is the effective value.

The heating effect of these

two sources is identical. 

Same power

dissipation

The default sine wave ac measurement is Vrms .
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 r.m.s. values are useful because their relationship to 
average power is similar to the corresponding DC 
values

rmsrmsav
IVP =

RIP
rmsav

2
=

R

V
P rms

av

2

=
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 Form factor

 for any waveform the form factor is defined as

 for a sine wave this gives

value average
value r.m.s.factor Form =

11.1
 0.637

 0.707
factor Form ==

p
V

p
V
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 Peak factor

 for any waveform the peak factor is defined as

 for a sine wave this gives

value r.m.s.
value peak

factor Peak =

414.1
 0.707

factor Peak ==
p

V
p

V
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Voltage and Current Values for a Sine Wave

.

Definitions of important amplitude values for a sine wave of voltage or current.
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Voltage and Current Values for a Sine Wave

 The average value is 0.637 × peak value.

 The rms value is 0.707 × peak value.

 The peak value is 1.414 × rms value.

 The peak-to-peak value is 2.828 × rms value.
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Square Waves
 Frequency, period, peak value and peak-to-peak 

value have the same meaning for all repetitive 

waveforms
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 Phase angle

 we can divide the period 
into 360 or 2 radians

 useful in defining phase 
relationship between signals

 in the waveforms shown
here, B lags A by 90

 we could alternatively give
the time delay of one with
respect to the other
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 Average and r.m.s. values

 the average value of a symmetrical waveform is its 
average value over the positive half-cycle

 thus the average value of a symmetrical square wave is 
equal to its peak value

 similarly, since the instantaneous value of a square wave 
is either its peak positive or peak negative value, the 
square of this is the peak value squared, and

p
V

av
V =

p
V

rms
V =
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 Form factor and peak factor

 from the earlier definitions, for a square wave

0.1
value average

value r.m.s.factor Form ===

p
V

p
V

0.1
value r.m.s.
value peak

factor Peak ===

p
V

p
V
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Root-mean squared value of a periodic 
waveform with period T


+

=
Tot

ot
avg dttp

T
P )(

1

R

V
P rms

avg

2

=


+

=
Tot

ot
rms dttv

T
V )(

1 22

Apply v(t) to a resistor


+++

=













==

Tot

ot

Tot

ot

Tot

ot
avg dttv

RT
dt

R

tv

T
dttp

T
P )(

1)(1
)(

1 2
2

Compare to the average power 
expression

rms is based on a power concept, describing the 

equivalent voltage that will produce a given 

average power to a resistor

The average value of the squared voltage

compare
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Root-mean squared value of a periodic waveform with 
period T


+

+=
Tot

ot
orms dttV

T
V )(sin

1 222 

 
Tot

ot
o

oTot

ot
orms

t
t

T

V
dtt

T

V
V

+
+








 +
−=+−=  




2

)(2sin

2
)(2cos1

2

22
2

,
2

2
2 V

Vrms =


+

=
Tot

ot
rms dttv

T
V )(

1 22

For the sinusoidal case

2

V
Vrms =

),sin()(  += tVtv o

3/30/2020



111

RMS of some common periodic waveforms

2
2

0

2

0

22 1
)(

1
DVDT

T

V
dtV

T
dttv

T
V

DTT

rms =•=== 

DVVrms =

Duty cycle controller

DT

T

V

0

0 < D < 1

By inspection, this is 

the average value of 

the squared 

waveform
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RMS of common periodic waveforms, cont.

TTT

rms t
T

V
dtt

T

V
dtt

T

V

T
V

0

3

3

2

0

2

3

2

0

2
2

3

1
==








= 

T

V

0

3

V
Vrms =

Sawtooth
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RMS of common periodic waveforms, cont.
Using the power concept, it is easy to reason that the following waveforms 

would all produce the same average power to a resistor, and thus their rms 

values are identical and equal to the previous example

V

0

V

0

V

0

0

-V

V

0

3

V
Vrms =

V

0

V

0
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RMS of common periodic waveforms, cont.

Now, consider a useful example, based upon a waveform that is often seen in 

DC-DC converter currents.  Decompose the waveform into its ripple, plus its 

minimum value.

( )minmax II −

0

)(ti
the ripple

+

0

minI

the minimum value

)(ti

maxI

minI
=

( )
2

minmax II
Iavg

+
=

avgI
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RMS of common periodic waveforms, cont.
( ) 2

min
2 )( ItiAvgIrms += 

 2
minmin

22 )(2)( IItitiAvgIrms +•+= 

    2
minmin

22 )( 2)(  ItiAvgItiAvgIrms +•+= 

( ) ( ) 2
min

minmax
min

2
minmax2

2
2

3
I

II
I

II
Irms +

−
•+

−
=

2
minmin

2
2

3
III

I
I PP

PP
rms ++=

minmax IIIPP −=Define
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RMS of common periodic waveforms, cont.

2
min

PP
avg

I
II −=

22
2

223








−+








−+= PP

avgPP
PP

avg
PP

rms
I

II
I

I
I

I

423

2
2

22
2 PP

PPavgavg
PP

PPavg
PP

rms
I

III
I

II
I

I +−+−+=

2
22

2

43
avg

PPPP
rms I

II
I +−=

Recognize that

12

2
22 PP
avgrms

I
II +=

avgI

)(ti

minmax IIIPP −=

( )
2

minmax II
Iavg

+
=
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RMS of segmented waveforms
Consider a modification of the previous example.  A constant value exists 

during D of the cycle, and a sawtooth exists during (1-D) of the cycle.















+==  

+ +

+

+ DTot

ot

Tot

DTot

Tot

ot

rms dttidtti
T

dtti
T

I )()(
1

)(
1 2222

avgI PPI

)(ti

DT (1-D)T

oI















−
•−+•=  

+ +

+

DTot

ot

Tot

DTot

rms dtti
TD

TDdtti
DT

DT
T

I )(
)1(

1
)1()(

11 222

avgIIn this example,        is defined as 

the average value of the sawtooth 

portion
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RMS of segmented waveforms, cont.

    ToverDToverrms tiAvgTDtiAvgDT
T

I D)-1(  
2

  
22

)( )1()( 
1

•−+•=

    ToverDToverrms tiAvgDtiAvgDI D)-1(  
2

  
22

)( )1()( •−+•=














+•−+•=

12
)1(

2
222 PP
avgorms

I
IDIDI a weighted average















−
•−+•=  

+ +

+

DTot

ot

Tot

DTot

rms dtti
TD

TDdtti
DT

DT
T

I )(
)1(

1
)1()(

11 222

So, the squared rms value of a segmented waveform can be 

computed by finding the squared rms values of each segment, 

weighting each by its fraction of T, and adding
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RMS in terms of Fourier Coefficients

( ) 


=

+=

1

2
22

2
k

k
avgrms

V
VV

avgrms VV which means that

and that

2

k
rms

V
V  for any k
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Bounds on RMS

From the power concept, it is obvious that the rms voltage or 

current can never be greater than the maximum absolute value 

of the corresponding v(t) or i(t)

From the Fourier concept, it is obvious that the rms voltage or 

current can never be less than the absolute value of the 

average of the corresponding v(t) or i(t)
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Instantaneous power p(t) flowing into the box

)()()( titvtp •=
Circuit in a box, 

two wires

)(ti

)(tv

+

−

)(ti

)()()()()( titvtitvtp bbaa •+•= )(tva
Circuit in a box, 

three wires

)(tia

+

−

)(tib

+

−

)(tvb

)()( titi ba +Any wire can be the 

voltage reference

Works for any circuit, as long as all N wires are accounted for.  There must 

be (N – 1) voltage measurements, and (N – 1) current measurements.
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( )i t

( )v t

+

−

( )  cos(    )m i
i t I t = +

( )  cos(    )vmv t V t = +

(( ) ( ))v tp t i t=  cos(     ){ }{ cos }( )mivmV t I t  += −

 cos(  cos( )   )m vm i
I tV t   −= +

1 1

2
cos cos cos( ) cos

2
( )   = − + +

Since

Therefore

( )  cos(  )mi t I t=

( )  cos(     )v imv t V t  = + −

cos( ) cos cos  sin in s    + = −
Since

cos(2  ) cos(  )cos(2 ) sin(  )sin(2 )v vi i ivt t t      + − = − − −

( ) cos(  )  cos(  )cos(2 ) sin(  )sin(2 )
2 2 2

 m m m
v v v

m m m
i i i

I I Ip t t V tV V     = − + − − −

( ) cos(  )  cos(2  ) 
2 2

m
i iv

mm
v

mI Ip t tV V   = − + + −
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( )i t

( )v t

+

−

( )  cos(  )mi t I t=

( )  cos(     )v imv t V t  = + −

( ) cos(  )  cos(  cos() sin(  )
2 2 2

sin(2 ) 2 )m m m
i i

m m m
v v v i

tI It V Vp V t I    = − + − − −

You can see that that the frequency of the 
Instantaneous
power is twice the frequency of the voltage or current

                                      

P
                                       

Q
 

( ) P P (2 t) p t   cos  Q (2 t)sin= − + 
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( ) P P (2 t) p t   cos  Q (2 t)sin= − + 

The instantaneous power

P ( )V I

VI
cos

2
= −  real (or average) power  (Watts)

Which is the actual power absorb by the element 

Examples   Electric Heater ,  Electric Stove , oven Toasters, Iron  …etc

Q ( )V I

VI
sin

2
= −  reactive power

Which is the reactive power absorb or deliver by the element 

Reactive power represents energy stored in reactive elements 

(inductors and capacitors). Its unit is Volt Ampere Reactive  (VAR) 
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( ) P P (2 t) p t   cos  Q (2 t)sin= − + 

The instantaneous power

P ( )V I

VI
cos

2
= −  real (or average) power  (Watts)

Q ( )V I

VI
sin

2
= −  reactive power (Volt Ampere Reactive  (VAR) ) 
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Complex Power

Previously, we found it convenient to introduce sinusoidal voltage and current in terms 

of the complex number the phasor

Definition

ˆ           P

were

ˆ           P    is the complex power

           

       

 

 

  

  

 is the  ave

  

rage p

 is the  reactive power

ower

 

Q

Q

P

jP= +

Let the complex power be the complex sum of real power and reactive power 
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Advantages of using complex power

ˆReal P{ }P = Ιmag }P{ˆQ =

− We can compute the average and reactive power from the complex power S

− complex power      provide a geometric 

interpretation 

P̂ jP Q= +

P̂ jP Q= +

sin(  )
tan

cos(  )
v

v

i

i

I

I

V

V








−

 
 
 
 

−
=

−

22
P̂ =       Is called  QP + apparent power (VA)

n =ta
Q

P
 − 

 
 

P̂  e
j

=

were

sin(  )
tan

cos(  )
v i

iv









 
 
 






− −
=

− ( )tan tan(  )v i
 −= −  

iv = −

power factor angle

The geometric relations for a right triangle mean the four power triangle dimensions 

(        , P, Q,  ) can be determined if any two of the four are known

P̂

ˆ|P|

cos(  )
2 v i

VI  = − sin(  )
2 v i

VI  = −

              

(reactive power)  VAR

Q

             

( average power) Watts

P



VAˆ|P|
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Power Calculations

cos(  )   sin(  ) 
2 2i iv v

V VI Ij  = − + −

cos(  )   sin(  )
2

 
i iv v

I jV    
 

= − + −
(  )

 
2

e
j v iIV  −

=
( ) ( )

 
1

2
e e

j j iv
IV

 −

=

were *I Is the conjugate of the current 
phasor 

V

+

−

I

Circuit
1ˆ  
2

=P *VI

P̂ jP Q= +

2
 
1

= V *I

I

1
P

2
 ˆ = V *I (

1ˆ ) P
2

= Z *I I
2

 
1

= Z *II
2

 
1

2
= Z ISince

Similarly 1
P

2
 ˆ = V *I

*
P̂  

1

2

 
 
 

=
Z

V
V

2
 
1

= VV*

*Z

2

 
1

2

  
=

V

*Z3/30/2020 128



Power Calculations Summery

cos(  )   sin(  ) 
2 2i iv v

V VI Ij  = − + −

V

+

−

I

Circuit
1ˆ  
2

=P *VI

ˆ QjP= +P

2
 
1

2
= Z I

2

 
1

2

  
=

V

*Z

              

(reactive power)  VAR

Q

             

( average power) Watts

P



VAˆ|P|

P̂ jP Q= +

22
P̂ =       Is called  QP + apparent power (VA)

P̂  e
j

=

 
iv = −

power factor angle
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iallcircuit elements
P̂ 0=

i,AVallcircuit elements
P 0=

iallcircuit elements
Q 0=

This implies that in any circuit, conservation of average power and

Conservation of reactive power are achieved

In any circuit, conservation of complex power is achieved

However, the apparent power (the magnitude of the complex power) 

is not conserved
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Ex: Determine the average and reactive power 
delivered by the source. 

The phasor current leaving the source is

The average power delivered by the source is:

( )( )
*

AV,source

1
P Re 10 30 1.86 98.2

2
 =  −  −
 

10 30
Î 1.86 98.2

2 j8 j3

 −
= =  −

+ −

( )9.28cos 30 98.2 3.45W= − + =

( )( )
1

Re 10 30 1.86 98.2
2

=  −   
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The reactive power delivered by the source is:

( )( )source

1
Q Im 10 30 1.86 98.2 *

2
=  −  −  

And the complex power delivered by the source is

source AV,source sourceP̂ P jQ= +

( )( )
1

Im 10 30 1.86 98.2
2

=  −   

( )9.28sin 30 98.2 8.62  = − + = VAR

3.45 j8.62VA= +
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Determine the average power and reactive power delivered to each element

The voltage across the elements are:

Thus the complex power delivered to each element is

Î 1.86 98.2=  −

R R

1ˆ ˆ ˆP V I*
2

=

L L

1ˆ ˆ ˆP V I*
2

=

C C

1ˆ ˆ ˆP V I*
2

=

R
ˆ ˆV 2I= 2(1.86 98.2 )=  − 3.71 98.2   V=  −

L
ˆ ˆV j8I= ( j8)(1.86 98.2 )=  − (8 )(1.8690. 90 8.2 )=   −

14.86 8.2  V=  −

C
ˆ ˆV j3I= −

*1
(3.71 98.2)(1.86 98.2 )

2
=  −  −

3.45 0= 

1
(3.71 98.2)(1.86 98.2 )

2
=  − 

3.45 j0   VA= +

*1
(14.86 8.2)(1.86 98.2 )

2
=  −  −  13.79 90=  0 j13.79  VA= +

*1
(5.57 188.2)(1.86 98.2 )

2
=  −  −  5.17 90=  − 0 j5.17  VA= −

( j3)(1.86 98.2 )= −  − (3 )(1.8690 98.2 ).0=   −− 5.57 188.2   V=  −
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show that conservation of complex power, average
power, and reactive power is achieved.

source R L C
ˆ ˆ ˆ ˆP P P P

3.45 j8.62 3.45 j0 0 j13.79 0 j5.17

= + +

+ = + + + + −

AV,source AV,R AV,L AV,CP P P P

3.45 3.45 0 0

= + +

= + +

source R L CQ Q Q Q

8.62 0 13.79 5.17

= + +

= + −
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Power Relations for the Resistor

V I 0 −  =The voltage and current are in phase so

2
2R

AV,R R

V1 1
P I R

2 R 2
= =

RQ 0=

Average power is:

Reactive power is zero for resistor
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V I 90 −  =

( )L L L
ˆ ˆ ˆV j LI L 90 I=  =  

The voltage leads the current by 90 so that 

AV,L L L

1
P V I cos90 0

2
= =

L L L L L

1 1
Q V I sin 90 V I

2 2
= =

Power Relations for the Inductor

3/30/2020 136



V I 90 −  = −

( )C C C
ˆ ˆ ˆI j CV C 90 V=  =  

The current leads the voltage by 90 so that 

C C C C

1 1 1ˆ ˆ ˆ ˆV I j I 90 I
j C C C

 
= = − =  − 

   

( )AV,C C C

1
P V I cos 90 0

2
= − =

( )C C C C C

1 1
Q V I sin 90 V I

2 2
= − = −

Power Relations for the Capacitor
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The power factor

 

        

( ) cos(  )   c

   

s

  

os(  ) sin in(  )
2 2 2

     

c (os(2 )

 

2

  

)m m mm m m
iv v vi i

I I Ip t

P P

V tV

Q

t V    = − + − − −

average average
power po

reactive
pw o erer w

Recall the Instantaneous power p(t) 

cos( sin(2 2 ) ) tQtP P  = + −

The angle v − i plays a role in the computation of both average and reactive power

The angle v − i is referred to as the power factor angle

We now define the following :

The power factor cos(  )v i
 = −pf
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The power factor cos(  )v i
 = −pf

Knowing the power factor pf does not tell you the power factor angle , because 

cos(  ) cos(  )
i viv   − = −

To completely describe this angle, we use the descriptive phrases lagging power factor
and leading power factor

Lagging power factor implies that  current lags voltage hence an inductive load

Leading power factor implies that  current leads voltage hence a capacitive load
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I

+

−

V

P VI=

2V

R
=

2RI=

VV = V

+

−

Circuit

              

(reactive power)  VAR

Q

             

( average power) Watts

P



VAˆ|P|

II = I

1ˆ  
2

=P *VI

2
 1

 
2 Z

=
*

V
21

 Z| |
2

= IjP Q= + cos(  )   sin(  ) 
2 2i iv v

V VI Ij  = − + −

+

−
R

V

R
I

RR R

1ˆ  
2

=P *V I RR

2
 
V I

=
1 2

R2
 RI=

+

−
L

V

L
I

LL L

1ˆ  
2

=P *V I LL

2
 
V I

=

+

−
C

V

C
I

CC C

1ˆ  
2

=P *V I CC

2
 
V I

=
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Average power

EX: Determine the average and reactive powers delivered  to the 
load impedance and the power factor of the load

L

5 j9 j2
V̂ 100 0

4 j6 5 j9 j2

+ −
= 

+ + + −
54.41 0.84   V=  −

L

100 0
Î

4 j6 5 j9 j2


=

+ + + −
6.32 55.3    A=  −

loadload cos(P   )
2

v i

IV
 = − (6.32)

cos
(54.41)

 0.8( 5 )
2

4 5 .3−= + 100 W=

54.41 0.84   V −

6.32 55.3  A −
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2

R

1
OR   I R

2
P = 

Average power loadload cos(P   )
2

v i

IV
 = − (6.32)

cos
(54.41)

 0.8( 5 )
2

4 5 .3−= + 100 W=

2

L

1
Î 5

2
=  100W=( )

21
6.32 5

2
= 

54.41 0.84   V −

6.32 55.3  A −
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LV̂ 54.41 0.84   V=  − L
ˆ 6.32 55.3    AI =  −

L
load

L sin(  )
2

Q  v i

IV
 = − (6.32)

sin
(54.41)

 0.8( 5 )
2

4 5 .3−= + 140  VAR=

reactive powers

54.41 0.84   V −

6.32 55.3  A −
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load
load

load sin(Q
2

  )v i

V I
 = − (6.32)

sin
(54.41)

 0.8( 5 )
2

4 5 .3−= + 140  VAR=

OR reactive reactive
load 2

 Q
IV

= reactive

ˆ| |LI I= 6.32=

reactive

( j9 j2)
54.41 0.84

5 (j9 j2)

−
−

+ −
=V

reactive

ˆ
LI=I

reactive

−

+

V

j7
54.41 0.84

5 j7
= −

+

7 90
54.41 0.84

8.6 54.46


−



=  44.27 34.7   V= 

reactive powers

54.41 0.84   V −

6.32 55.3  A −
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EX: Determine the average and reactive powers delivered  to the 
load impedance and the power factor of the load

loadV̂ 54.41 0.84   V=  − L
ˆ 6.32 55.3    AI = −

140  VAR=

OR reactive reactive
load 2

 Q
IV

=

reactive

−

+

V

L
load

L sin(  )
2

Q  v i

IV
 = −

reactive

ˆ| |LI I= 6.32= reactive
44.27  VV =

load
(44. (6

Q
.32)

2
27)

 =

  V44.27 34.7

9 139.8= 140 VAR
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This could also be calculated from the complex power 

delivered to the load

( )( )
*

*

load load load

1 1ˆ ˆ ˆP V I 54.41 0.84 6.32 55.3
2 2

100 j140VA

= =  −  −

= +

( ) ( )v Ipf cos cos 0.84 55.3 0.581=  −  = − + =

The power factor of the load is:

The load is lagging because the current lags the voltage
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A typical power distribution circuit

( )V I

VI VI
cos pf

2 2
 −  = 

The consumer is charged for the average power consumed by the load 

VI

2
The load requires a certain total apparent power 
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Ex : Suppose that the load  
voltage figure is 170V

The line resistance is 0.1 ohm

The load requires 10KW of average power. 

Examine the line losses for a load power factor of unity and for a power factor of 0.7
lagging.

( )1
AV L L2

P V I pf=

( )

( )( )
L

2 10KW
I 117.65A

170V 1
= =

( )

( )( )
L

2 10KW
I 168.07A

170V 0.7
= =

( )

( )
2

AV,line L line

692.04W

1412.33W pf 0.7

1
P

unity
R

f
I

2

p
=

=
= 



The load current is obtained from

For unity power factor this is

For power factor of 0.7

The powers consumed in the line losses

720 W extra power to be generated if pf is 0.7 to supply the load

( )

( )
2

AV,line L line

692.04W

1412.33W pf 0.7

1
P

unity
R

f
I

2

p
=

=
= 


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Power Factor Correction

Ex: : for previous determine the value of capacitor across the load to correct 
the power factor from 0.7 to unity if power frequency is 60Hz.

( )1

I cos 0.7 45.57− = − = −

( )

( )( )L

2 10KW
I 168.07A

170V 0.7
= =

For power factor of 0.7

LÎ 168.07 45.57=  −

C
L

C

ˆ
Î

Z
=

V
The current through the added capacitor is:

+
− Load

0.1  W

L

+

ˆ



Vo
S S
ˆ V 0= V C

From previous example

power factor 0.7 lagging

( )
170 0

1 j C


=


j C 170 0=   

Hence the total current
line L C
ˆ ˆ ˆI I I= +

( )117.66 j120.02 j 2 60 C 170= − +  

168.07 45.57 j C 170 0=  − +   

Unity power factor cos(  ) 1v i − =  0iv − = 0vi = =

Imaginary component of the line current is zero ( ) 0j 2 60 C 170j120.02  − + =

( )2

120.02

1
C

60 70 
= 1873 uF=

LÎ CÎ
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*1 1
1 1 1 1 1

*2 2
2 2 2 2 2

1 ˆ ˆcos( ) Re( )
2 2

1 ˆ ˆcos( ) Re( )
2 2

AV V I

AV V I

V I
P V I

V I
P V I

 

 

= − =

= − =

0

1 2

1 2 2 1
1 2 1 2 2 1

1
( )

if  

cos( ) cos( ) if  
2 2

T

AV

AV AV

AV AV V I V I

P p t dt
T

P P n m

V I V I
P P n m   

=

+ 


= 
+ + − + − =





2 /T  =Averaging the instantaneous over the common period

where

THUS: we may superimpose the average powers delivered by sources of

different frequencies, but we may not, in general, apply superposition to

average power if the sources are of the same frequency.  
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Ex : Determine the average power delivered by the two sources 
of the circuit

' '1 ˆRe(10 30 *)
2

AVP I= 

' ' '

,2 ,1

2 2
' '1 1ˆ ˆ2 1 8.333 W

2 2

AV AV AVP P P

I I

W W= +

= + =

Hence the average power delivered by the voltage source is

This can be confirmed from average powers delivered to the two resistors

' 10 30ˆ 2.357 15
2 4 1 1

I
j j


= =  −

+ + −

1
10 2.357 cos(30 15 )

2
=    + 8.333 W=
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'' ''ˆ ˆ(2 6) 3.727 82.77xV j I= + =  −

'' ''1 1ˆRe( 3 60 ) 3.727 3 cos( 82.77 60 ) 5.154 W
2 2

AVP V=  =    − + =

By current division:

The voltage across the current source is

Hence the average power delivered by the current source is

This may be again confirmed by computing the average power delivered to the

Two resistors:
2 2

'' '' '' '' ''

,2 ,1

1 1ˆ ˆ2 1 5.154 W
2 2

AV AV AV x yP P P I IW W= + = + =

Since frequencies are not the same, total average power delivered is the sum

of average powers delivered individually by each source 

''

2
1

3ˆ 3 60
2

2 6 1
3

x

j

I

j j

−

=  −

+ + −
0.589 154.33=  −

'' 2 6ˆ 3 60
2

2 6 1
3

y

j
I

j j

+
=  −

+ + −

3.101 49.08=  −
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EX 6.19: Determine the average power delivered by the two 
sources

' 10 0ˆ 3.536 45
2 4 2

I
j j


= =  −

+ −

'' 2ˆ 5 60 3.536 15
2 4 2

j
I

j j

−
= −  − =  −

+ −

We use superposition on the phasor circuit to find the current across the resistor

' ''ˆ ˆ ˆ 3.536 45 3.536 15 6.831 30I I I= + =  − +  − =  −

Since both sources have the same frequency, we can’t use superposition.

So we include both sources in one phasor circuit. The total average power

delivered by the sources is equal to the average power delivered to the resistor 
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' ''ˆ ˆ ˆ 3.536 45 3.536 15 6.831 30I I I= + =  − +  − =  −

21 ˆ 2 46.66 W
2

AVP I=  =

2 2
' ''1 1ˆ ˆ2 2 25 46.66

2 2
I I +  = 

ˆ ˆ10 0 (2 4) 22.88 132.63V j I=  − + =  −

The phasor current is:

Hence the average power delivered to the resistor is

*

, voltage source

1 ˆRe[(10 0 ) ] 29.58 W
2

AVP I=  =

, current source

1 ˆRe[ (5 60 )] 17.08 W
2

AVP V=  =

, source 29.58 17.08 46.66 WAVP = + =

Note that we may not superimpose average powers delivered to the resistors by the 

individual sources

We can compute this total average power by directly computing the average power

delivered by the sources from the phasor circuit

The voltage across the current source is

The average power delivered by voltage source is

The average power delivered by the current source is

The total average power delivered by the sources is
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➢ Phasors

❖ We have learnt from the previous section how to define and

express in a single equation the magnitude, frequency, and

phase shift of a sinusoidal signal.

❖ Any linear circuit that contains resistors, capacitors, and

inductors do not alter the shape of this signal, nor its

frequency.

❖ However, the linear circuit does change the amplitude of

the signal (amplification or attenuation) and shift its phase

(causing the output signal to lead or lag the input).

❖ The amplitude and phase are the two important quantities

that determine the way the circuit affects the signal.
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❖ Accordingly, signal can be expressed as a linear

combination of complex sinusoids.

❖ Phase and magnitude defines a phasor (vector) or complex

number. The phasor is similar to vector that has been

studied in mathematics.

❖ Figure shows how AC sinusoidal quantities are represented

by the position of a rotating vector. As the vector rotates it

generates an angle. The location of the vector on the plane

surface is determined by the magnitude (length) of the

vector and by the generated angle.
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❖ Representing sinusoidal signals by phasors is useful since

circuit analysis laws such as KVL and KCL and familiar

algebraic circuit analysis tools, such as series and parallel

equivalence, voltage and current division are applicable in

the phasor domain, which have been studied in DC circuits

can be applied.

❖ We do not need new analysis techniques to handle circuits

in the phasor domain. The only difference is that circuit

responses are phasors (complex numbers) rather than DC

signals (real numbers).
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Phasor Diagrams

To account for the different phases of the voltage drops, 
vector techniques are used.

Remember the phasors are rotating vectors

The phasors for the individual elements are shown.

Section  33.5
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Resulting Phasor Diagram

The individual phasor diagrams can 
be combined.

Here a single phasor Imax is used to 
represent the current in each element.

 In series, the current is the same 
in each element.

Section  33.5
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❖ Vector addition is used to

combine the voltage phasors.

❖ ΔVL and ΔVC are in opposite

directions, so they can be

combined.

❖ Their resultant is

perpendicular to ΔVR.

❖ The resultant of all the

individual voltages across the

individual elements is Δvmax.

❖ This resultant makes an

angle of φ with the current

phasor Imax.

➢ Vector Addition of  the Phasor Diagram
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➢ Resistors in an AC Circuit

❖ Consider a circuit

consisting of an AC

source and a resistor.

❖ The AC source is

symbolized by

❖ ΔvR = DVmax= Vmax sin

wt

❖ ΔvR is the instantaneous

voltage across the

resistor.
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❖The instantaneous current in the resistor is

❖The instantaneous voltage across the resistor is also given as

ΔvR = Imax R sin ωt

sin sin max
maxIR

R

v V
i ωt ωt

R R

 
= = =
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❖ The graph shows the current
through and the voltage across
the resistor.

❖ The current and the voltage
reach their maximum values at
the same time.

❖ The current and the voltage are
said to be in phase.

❖ For a sinusoidal applied voltage,
the current in a resistor is always
in phase with the voltage across
the resistor.

❖ The direction of the current has
no effect on the behavior of the
resistor.

❖ Resistors behave essentially the
same way in both DC and AC
circuits.
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❖ Kirchhoff ’s loop rule can 

be applied and gives:

0  or

0

max

,

sin

Lv v

di
v L

dt

di
v L V ωt

dt

 +  =

 − =

 = = 

Section  33.3

➢ Inductors in an AC Circuit
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❖ The equation obtained from Kirchhoff's loop rule can be 

solved for the current

❖ This shows that the instantaneous current iL in the

inductor and the instantaneous voltage ΔvL across the

inductor are out of phase by (p/2) rad = 90o.

max sin  

2

max

max max
max

cos

sin I

L

L

V V
i ωt dt ωt

L ωL

V π V
i ωt

ωL ωL

 
= = −

  
= − = 

 



Section  33.3

➢ Current in an Inductor
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➢ Phase Relationship of  Inductors in an AC Circuit

❖ The current is a
maximum when the
voltage across the
inductor is zero.
❖ The current is

momentarily not
changing

❖ For a sinusoidal applied
voltage, the current in an
inductor always lags
behind the voltage across
the inductor by 90° (π/2).
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❖ The factor ωL has the same units as resistance and is 

related to current and voltage in the same way as 

resistance.

❖ Because ωL depends on the frequency, it reacts differently, 

in terms of  offering resistance to current, for different 

frequencies.

❖ The factor is the inductive reactance and is given by:

XL = ωL

➢ Inductive Reactance
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❖ Current can be expressed in terms of  the inductive 
reactance:

❖ As the frequency increases, the inductive reactance 
increases

❖ This is consistent with Faraday’s Law:

❖ The larger the rate of  change of  the current in the 
inductor, the larger the back emf, giving an increase 
in the reactance and a decrease in the current.

max rms
max rms

L L

V V
I or I

X X

 
= =
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❖The instantaneous voltage across the inductor is

max

max

sin 

sin 

L

L

di
v L

dt

V ωt

I X ωt

 = −

= −

= −

➢ Voltage Across the Inductor
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❖ The circuit contains a
capacitor and an AC
source.

❖ Kirchhoff ’s loop rule
gives:

❖ Δv + Δvc = 0 and so

❖ Δv = ΔvC = ΔVmax sin ωt

❖ Δvc is the
instantaneous voltage
across the capacitor.

➢ Capacitors in an AC Circuit
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❖The charge is q = CΔVmax sin ωt

❖The instantaneous current is given by

❖The current is p/2 rad = 90o out of phase with the voltage

max

max

cos 

or sin
2

C

C

dq
i ωC V ωt

dt

π
i ωC V ωt

= = 

 
=  + 

 
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❖ The current reaches its 

maximum value one 

quarter of  a cycle sooner 

than the voltage reaches 

its maximum value.

❖ The current leads the 

voltage by 90o.
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❖ The maximum current in the circuit occurs at cos ωt = 1

which gives

❖ The impeding effect of a capacitor on the current in an

AC circuit is called the capacitive reactance and is given

by

max
max

1
which givesC

C

V
X I

ωC X


 =

max
max max

(1 )

V
I ωC V

/ ωC


=  =

➢ Capacitive Reactance
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❖ The instantaneous voltage across the capacitor can be

written as ΔvC = ΔVmax sin ωt = Imax XC sin ωt.

❖ As the frequency of the voltage source increases, the

capacitive reactance decreases and the maximum current

increases.

❖ As the frequency approaches zero, XC approaches infinity

and the current approaches zero.

❖ This would act like a DC voltage and the capacitor

would act as an open circuit.

➢ Voltage Across a Capacitor
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The RLC Series Circuit

The resistor, inductor, 
and capacitor can be 
combined in a circuit.

The current and the 
voltage in the circuit vary 
sinusoidally with time.
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❖ The instantaneous voltage would be given by Δv = ΔVmax

sin ωt.

❖ The instantaneous current would be given by i = Imax sin 
(ωt - φ).

❖ φ is the phase angle between the current and the 

applied voltage.

❖ Since the elements are in series, the current at all points in 

the circuit has the same amplitude and phase.
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❖ The instantaneous
voltage across the resistor
is in phase with the
current.

❖ The instantaneous
voltage across the
inductor leads the current
by 90°.

❖ The instantaneous
voltage across the
capacitor lags the current
by 90°.

➢I and v Phase Relationships – Graphical View
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❖ The instantaneous voltage across each of  the three circuit 

elements can be expressed as

max

max

max

 sin  sin 

 sin  cos 
2

 sin  cos 
2

R R

L L L

C C C

v I R ωt V ωt

π
v I X ωt V ωt

π
v I X ωt V ωt

 = = 

 
 = + =  

 

 
 = − = − 

 
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❖ ΔVR is the maximum voltage across the resistor and ΔVR

= ImaxR.

❖ ΔVL is the maximum voltage across the inductor and ΔVL

= ImaxXL.

❖ ΔVC is the maximum voltage across the capacitor and

ΔVC = ImaxXC.

❖ The sum of these voltages must equal the voltage from

the AC source.

❖ Because of the different phase relationships with the

current, they cannot be added directly.

➢ More About Voltage in RLC Circuits
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➢ Total Voltage in RLC Circuits

❖ From the vector diagram, ΔVmax can be calculated 

( )

( )

( )

2
2

max

22

max max max

22

max max

( )

R L C

L C

L C

V V V V

I R I X I X

V I R X X

 =  +  − 

= + −

 = + −
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❖ The current in an RLC circuit is

❖ Z is called the impedance of the circuit and it plays the
role of resistance in the circuit, where

❖ Impedance has units of ohms

( )

max max
max

22

L C

V V
I

ZR X X

 
= =

+ −

( )
22

L CZ R X X + −

Impedance
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❖ The right triangle in the phasor diagram can be used to

find the phase angle, φ.

❖ The phase angle can be positive or negative and

determines the nature of the circuit.

1tan L CX X
φ

R

− − 
=  

 

➢ Phase Angle
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❖ If  f  is positive

❖ XL> XC (which occurs at high frequencies)

❖ The current lags the applied voltage.

❖ The circuit is more inductive than capacitive.

❖ If  f  is negative

❖ XL< XC (which occurs at low frequencies)

❖ The current leads the applied voltage.

❖ The circuit is more capacitive than inductive.

❖ If  f  is zero

❖ XL= XC

❖ The circuit is purely resistive.

➢ Determining the Nature of the Circuit
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❖ The average power delivered by the AC source is

converted to internal energy in the resistor.

❖ Pavg = ½ Imax ΔVmax cos f = IrmsΔVrms cos f

❖ cos f is called the power factor of the circuit

❖ We can also find the average power in terms of R.

❖ Pavg = I2
rmsR

❖ When the load is purely resistive, f = 0 and cos f = 1

❖ Pavg = Irms ΔVrms

➢ Power in an AC Circuit

3/30/2020 197



❖ The average power delivered by the source is converted to
internal energy in the resistor.

❖ No power losses are associated with pure capacitors and
pure inductors in an AC circuit.

❖ In a capacitor, during one-half of a cycle, energy is
stored and during the other half the energy is returned
to the circuit and no power losses occur in the
capacitor.

❖ In an inductor, the source does work against the back
emf of the inductor and energy is stored in the
inductor, but when the current begins to decrease in
the circuit, the energy is returned to the circuit.

❖ The power delivered by an AC circuit depends on the
phase.

❖ Some applications include using capacitors to shift the
phase to heavy motors or other inductive loads so that
excessively high voltages are not needed.
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➢ Power as a Function of  Frequency 

❖ Power can be expressed
as a function of
frequency in an RLC
circuit.

❖ This shows that at
resonance, the average
power is a maximum.

( )

( )

2 2

2
2 2 2 2 2

rms

av

o

V Rω
P

R ω L ω ω


=

+ −
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UNIT-IV

RESONANCE



Learning Objectives

• Become familiar with the frequency response of a series
resonant circuit and how to calculate the resonant and cutoff
frequencies.

• Be able to calculate a tuned network’s quality factor,
bandwidth, and power levels at important frequency levels.

• Become familiar with the frequency response of a parallel
resonant circuit and how to calculate the resonant and cutoff
frequencies.

• Understand the impact of the quality factor on the frequency
response of a series or parallel resonant network.



Resonance In Electric Circuits


Any passive electric circuit will resonate if it has an inductor
and capacitor.

 Resonance is characterized by the input voltage and current
being in phase.  The driving point impedance (or admittance) 
is completely real when this condition exists.


In this presentation we will consider (a) series resonance, and
(b) parallel resonance.



Resonance Introduction

• Resonant (or tuned ) circuits, are fundamental to the 
operation of a wide variety of electrical and electronic 
systems in use today. 

• The resonant circuit is a combination of R, L, and C elements 
having a frequency response characteristic similar to the one 
below:



Resonance Introduction

• The resonant electrical circuit must have both
inductance and capacitance.

• In addition, resistance will always be present due
either to the lack of ideal elements or to the control
offered on the shape of the resonance curve.

• When resonance occurs due to the application of the
proper frequency ( fr), the energy absorbed by one
reactive element is the same as that released by
another reactive element within the system.

• Remember:
1 1

2

2

C C C

L L L

X Z jX
wC fC

X wL fL Z jX





= = = = −

= = = =



The Resonance Effect

▪ The most common application of resonance in rf circuits is called tuning.
▪ In Fig. below, the LC circuit is resonant at 1000 kHz.
▪ The result is maximum output at 1000 kHz, compared with lower or higher 
frequencies.



Series Resonant Circuit

Phasor diagram for the 

series resonant circuit at 

resonance.

Power triangle for the 

series resonant circuit at 

resonance.

Series resonant circuit.

The basic format of the series resonant circuit is a series R-L-C 
combination in series with an applied voltage source. 



ZT Versus Frequency

• Knowing that XC and XL are dependent upon frequency it can be
stated:
– Capacitor Impedance decreases as frequency increases.
– Inductor Impedance increases as frequency increases.

• This implies that the total impedance of the series R-L-C circuit below, at
any frequency, is determined by:

2 2( )T L CZ R X X= + −

XL versus f XC versus f

T L CZ R jX jX= + −



• The total-impedance-versus-frequency curve for the series resonant
circuit below can be found by applying the impedance-versus-frequency
curve for each element of the equation previously shown, written in the
following form:

• When XL=XC the resonant frequency (fr) can be found.

ZT Versus Frequency

2 2( ) [ ( )] [ ( ) ( )]T L CZ f R f X f X f= + −

Frequency response of XL and XC of a series 

R-L-C circuit on the same set of axes



The Resonant Frequency (fr)

21 1 1

1
, 2

1

2

C L

r

X X

L C
C L LC

f
LC

f
LC

  
 

  



=

= = = = =

= =

=

since 

• To find fr, set the impedances equal and solve:

• This is the key equation for
resonance. Total impedance
at this point is shown to the
right:

ZT versus f



Current Versus Frequency

• If impedance is minimum at fr, current will be at a maximum:

• If we now plot the magnitude of the current versus frequency
for a fixed applied voltage E, we obtain the curve showing that
current is maximum at fr:

T

E
I

Z
=

I versus f for the series resonant circuit



Cont…

LCπ2

1
f r =

Example:

20 V

f

4 Ω

1 μF1 mH

1 2 3 4 5 6 7 8 9 10
Frequency in kHz

5

0

3

4

2

1

C
u

rr
en

t 
in

 A

LCπ2

1
f r = = 

1

2 π 1× 10−3 × 1× 10−6

= 5.03 kHz



• Band frequencies are those that define the points on the 
resonance curve that are 0.707(           ) of the peak current or 
voltage.

• Bandwidth (BW) is the range of frequencies between the band, 
or ½ power frequencies. Defined by:

Bandwidth (BW)

1
0.707

2
=

2 1BW f f= −

1,2
2

r

BW
f f= 



• The quality factor (Q) of a series resonant circuit is defined as the
ratio of the reactive power of either the inductor or the capacitor
to the average power of the resistor at resonance.

• Q can be found several ways:

• This also gives an alternate way to find BW:

The Quality Factor (Q)

2r L r rf X L f L
Q

BW R R R

 
= = = =

rfBW
Q

=



Example Problem 1

Determine fr, Q, BW and the current (I) at resonance. Plot the 
current vs. frequency and label fr, f1, f2 and BW.

2 2 (10 )(320 ) 20L r rX L f L kHz H   = = = = 

1 1 1
20

2 2 (10 )(800 )
C

r r

X
C f C kHz nH  

= = = = 

Because we are at fr we know that XL = XC, but just to show it:

1 1
10

2 2 (320 )(800 )
rf kHz

LC H nF  
= = =

We know XL so we can find Q:

We know Q so we can find BW:

Now find Imax:
Remember, since 
XL=XC at 
resonance, they 
cancel out for ZT

and only R is left.

10
500

20

rf kHZ
BW Hz

Q
= = =

20
20

1

LX
Q

R
= = =





10
10

1T

E V
I A

Z
= = =



1,2 2

1

500
10 10.25

2 2

500
10 9.75

2

r

BW Hz
f f f kHz kHz

Hz
f kHz kHz

=  = = + =

= = − =

Now let’s find f1 and f2 and then plot:

R=1Ω



Example Problem 2

a) Find I, VR, VC, VL at resonance.

b) Determine Q for the circuit.

c) If the fr is 5 kHz, what is the BW?

d) With fr = 5kHz what are the values of L
and C?

e) What is the power dissipated in the 
circuit at the half-power frequency?

XL=30Ω

XC=30ΩE=50mV

2 30 30 2T L CZ R jX jX j j= + − = + − =a)     

50 0
25 0

2 0T

E mV
I mA

Z

 
= = =  

 

* (25 0 )*(2 0 ) 50 0RV I R mA mV= =     =  

* (25 0 )*(30 90 ) 750 90L LV I X mA mV= =     =  

* (25 0 )*(30 90 ) 750 90C CV I X mA mV= =   −  = − 

C LV V=This shows that at resonance 

30
15

2

LX
Q

R
= = =b)  





5
333.3

15

rf kHZ
BW Hz

Q
= = =c)  

2

0.707 * (25 *0.707)*(2 ) 35.4P I R mA mW= = =e)  

2

30
955

2 2 (5 )

L r

L

r

X f L

X
L H

f kHz




 

= =

= = =

d)   



1

2

1 1
1.06

2 2 (5 )(30 )

C

r

r C

X
f C

C F
f X kHz




 

= =

= = =




VR, VL, AND VC
• In case you were wondering about KVL from the last problem, the below 

plot is what is happening with VL and VC at resonance.
– VR follows the I curve.

– Until fr is reached, VC builds up from a value equal to the input voltage (E) because the 
reactance of the capacitor is infinite (open circuit) at zero frequency, but then 
decreases toward zero.

– VL increases from zero until fr is reached, but then decreases to E.

• Notice, again, that VL = VC at the resonant frequency.

VR, VL, VC, and I for a series resonant circuit where Qs ≥10



Parallel Resonant Circuit

• The basic format of the parallel resonant 
circuit is a parallel R-L-C combination with an 
applied current source. 

• The parallel resonant circuit has the basic 
configuration shown below:

Ideal parallel resonant network



Parallel Resonance

• When L and C are in parallel and XL equals XC, 
the reactive branch currents are equal and 
opposite at resonance.

• Then they cancel each other to produce 
minimum current in the main line.

• Since the line current is minimum, the 
impedance is maximum.



Substituting the equivalent parallel network for the series R-L combination

Equivalent parallel network for a series R-L combination

Substituting R = Rs ║ Rp for the network

Practical parallel L-C network

Parallel Resonant Circuit

2 2

2

2 2

2 2

p

l L
p

l

l L
L

L

l L
C

L

R X
R

R

R X
X

X

R X
X

X

+
=

+
=

+
=



• Unity Power Factor, fp:

• Maximum Impedance, fm:

2

1 l
p r

R C
f f

L
= −

2
1

1
4

l
m r

R C
f f

L

 
= −  

 

r p mf f f 

Parallel Resonant Circuit



ZT versus frequency for the parallel resonant circuit

Parallel Resonant Circuit



Phase plot for the parallel resonant circuit

Parallel Resonant Circuit



Parallel Resonance



Parallel Resonance

20 V R = 1 k C = 1 F L = 1 mH

Frequency Response

Frequency in kHz
1 2 3 4 5 6 7 8 9 10

0

1

2

3

I T
in

 A

Inductive Capacitive



Resonant Frequency

LCπ2

1
f r =

• The formula for the resonant frequency is 
derived from XL = XC.

▪ For any series or parallel LC circuit, the fr equal to 

is the resonant frequency that makes the inductive and capacitive 
reactances equal.



Q Magnification Factor of Resonant Circuit

• The quality, or figure of merit, of the resonant 
circuit, the sharpness of resonance curve, is 
indicated by dimensionless parameter factor Q.

• The higher the ratio of the reactance at 
resonance to the series resistance, the higher the 
Q and the sharper the resonance effect.

• The Q of the resonant circuit can be considered a 
magnification factor that determines how much 
the voltage across L or C is increased by the 
resonant rise of current in a series circuit.



Cont..

❖ Q = ωo / Δω = (ωoL) / R 

❖ Δω is the width of  the curve, measured between 
the two values of  ω for which  Pavg has half  its 
maximum value.

❖ These points are called the half-power points.

❖ A high-Q circuit responds only to a narrow range of  
frequencies.

❖ Narrow peak

❖ A low-Q circuit can detect a much broader range of  
frequencies.

❖ A radio’s receiving circuit is an important application of  a 
resonant circuit.



Q Magnification Factor of Resonant Circuit

Q is often established by coil resistance.

31.6
1

31.6
==

rS

XL
Q =

20 V

5.03 kHz
C = 1 F L = 1 mH

rS = 1 



Q Magnification Factor of Resonant Circuit

4 
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point

Q = 7.8 Q = 32

Increasing the L/C Ratio Raises the Q



Effect Of Ql ≥ 10

• The content of the previous section may suggest that
the analysis of parallel resonant circuits is
significantly more complex than that encountered for
series resonant circuits.

• Fortunately, however, this is not the case since, for
the majority of parallel resonant circuits, the quality
factor of the coil Ql is sufficiently large (Ql ≥ 10) to
permit a number of approximations that simplify the
required analysis.



Effect Of Ql ≥ 10

• Inductive Reactance:

• Resonant Frequency, fp (Unity Power Factor) and Resonant 
Frequency, fm (Max VC):

• Rp

• ZTp

• Qp

Lp LX X

m p rf f f 

p

l

L
R

R C


2||
pT s l lZ R Q R

2|| ( )

if 

s l l
p

L

s p

p l

R Q R
Q

X

R R

Q Q







Approximate equivalent circuit for Ql ≥ 10 

L CX X



Effect Of Ql ≥ 10

• BW

• IL and IC

Establishing the relationship between IC and IL and the current IT

2 1
( )2

s

pl

R p

fR
BW f f

L Q =

= − = =

L l T

C l T

I Q I

I Q I







Analysis of Parallel 
Resonant Circuits

.
▪ Parallel resonance is more complex
than series resonance because the

reactive branch currents are not

exactly equal when XL equals XC.

▪ The coil has its series resistance rs in
the XL branch, whereas the capacitor
has only XC in its branch.

▪ For high-Q circuits, we consider rs

negligible.



Analysis of Parallel 
Resonant Circuits

• In low-Q circuits, the inductive branch must be analyzed as a complex
impedance with XL and rs in series.

• This impedance is in parallel with XC, as shown in Fig. The total impedance
ZEQ can then be calculated by using complex numbers.



25-10: Damping of Parallel Resonant Circuits

▪ In Fig. (a), the shunt RP

across L and C is a
damping resistance
because it lowers the Q of
the tuned circuit.
▪ The RP may represent
the resistance of the
external source driving
the parallel resonant
circuit, or Rp can be an
actual resistor.
▪ Using the parallel RP to
reduce Q is better than
increasing rs.



Summary Table



Example Problem 3

Find the resonant frequency (fr), Q, BW, f1, f2 and draw the frequency 
response for the circuit below:

2 2 (50 )(10 ) 3141.5L rX f L kHz mH = = = 

1,2 2

1

2.5
50 51.25

2 2

2.5
50 48.75

2

r

BW kHz
f f f kHz kHz

kHz
f kHz kHz

=  = = + =

= = − =

50
2.5

20

p

p

f kHz
BW kHz

Q
= = =

62.8
20

3145.5

p

p

L

R k
Q

X


 = =



1 1
50

2 2 10 *1013
rf kHz

LC mH pF 
= = =

f1

48.75kHz
f2

51.25kHz
fr

50kHz

Imax = 20mA



Choosing L and C for a Resonant Circuit

• A known value for either L or C is needed to calculate
the other.

• In some cases, particularly at very high frequencies, C
must be the minimum possible value.

• At medium frequencies, we can choose L for the
general case when an XLof 1000 Ω is desirable and can
be obtained.

• For resonance at 159 kHz with a 1-mH L, the required C
is 0.001 μF.

• This value of C can be calculated for an XC of 1000 Ω,
equal to XL at the fr of 159 kHz.



Tuning

Fig. 25-12

▪ Tuning means obtaining resonance at different frequencies by varying either L 
or C.
▪ As illustrated in Fig. 25-12, the variable capacitance C can be adjusted to tune 
the series LC circuit to resonance at any one of five different frequencies.



Tuning

▪ Fig. illustrates a typical
application of resonant circuits
in tuning a receiver to the
carrier frequency of a desired
radio station.
▪ The tuning is done by the air
capacitor C, which can be varied
from 360 pF to 40 pF.



Mistuning

• When the frequency of the input voltage and
the resonant frequency of a series LC circuit
are not the same, the mistuned circuit has
very little output compared with the Q rise in
voltage at resonance.

• Similarly, when a parallel circuit is mistuned, it
does not have a high value of impedance

• The net reactance of resonance makes the LC
circuit either inductive or capacitive.



Points to remember:

• Characteristics of series resonance circuit: 
• Minimum impedance 
• Maximum circuit current 
• cos(φ) = 1 , hence current and voltage becomes in 
phase. 
• Circuit current becomes proportional to circuit 
resistance i.e. I ~ 1/R 

• Uses of series resonance circuit: 
• As frequency selection circuit in radio and TV tuner 
circuits. 
• As band pass filter circuit. 



Points to remember:

• Characteristics of parallel resonance circuit: 
• Maximum impedance 
• Minimum circuit current 
• cos(φ) = 1, hence voltage and current becomes in phase 
• Circuit current depends on circuit impedance, Z = L/C or I 
~ -(1/R) 

• Uses of parallel resonance circuit: 
• As a Band Stop Filter 
• As a tank circuit in Oscillators 
• As a plate load in IF and RF amplifiers 
• As I.F. trap in aerial circuit of radio as well as TV receivers. 



Comparison between series resonance 
and parallel resonance circuits

Specifications
Series resonance
circuit(Acceptors)

Parallel resonance
circuit(Rejectors)

Impedance at 
resonance 

Minimum Maximum 

Current at 
resonance 

Maximum Minimum 

Effective 
impedance 

R L/CR 

Resonant 
frequency 

1/(2*π*(LC)0.5) (1/2*π)*{(1/LC)- R2/L2}0.5

It magnifies Voltage Current 

It is known as Acceptor circuit Rejector circuit 

Power Factor Unity Unity 



Work done problems

1. A constant voltage of frequency, 1
MHz is applied to a lossy inductor (r in
series with L), in series with variable
capacitor, C The current drawn is
maximum, when C = 400 pF; while
current is reduced to (2/1) of the above
value, when C = 450 pF. Find the values
of r and L. Calculate also the quality

factor of the coil, and the bandwidth.

• Solution:



• 2. A coil, having a resistance
of 15 Ω and an inductance of
0.75 H, is connected in series
with a capacitor (Fig. a.) The
circuit draws maximum
current, when a voltage of
200 V at 50 Hz is applied. A
second capacitor is then
connected in parallel to the
circuit (Fig.b). What should be
its value, such that the
combination acts like a non-
inductive resistance, with the
same voltage (200 V) at 100
Hz? Calculate also the current
drawn by the two circuits.

Fig.a

Fig.b





Resonance in an AC Circuit

•Resonance occurs at the frequency ωo where the current has its 
maximum value.

– To achieve maximum current, the impedance must have a minimum 
value.

– This occurs when XL = XC

– Solving for the frequency gives 

•The resonance frequency also corresponds to the natural frequency 
of oscillation of an LC circuit.
•The rms current has a maximum value when the frequency of the 
applied voltage matches the natural oscillator frequency.
•At the resonance frequency, the current is in phase with the applied 
voltage.

1
oω

LC
=



Resonance, cont.

•Resonance occurs at the
same frequency regardless of
the value of R.

•As R decreases, the curve
becomes narrower and taller.

•Theoretically, if R = 0 the
current would be infinite at
resonance.

– Real circuits always have 
some resistance.

Section  33.7



Quality Factor

•The sharpness of the resonance curve is usually described by 
a dimensionless parameter known as the quality factor, Q.
•Q = ωo / Δω = (ωoL) / R 

– Δω is the width of the curve, measured between the two values 
of ω for which  Pavg has half its maximum value.
• These points are called the half-power points.

•A high-Q circuit responds only to a narrow range of 
frequencies.

– Narrow peak

•A low-Q circuit can detect a much broader range of 
frequencies.
•A radio’s receiving circuit is an important application of a 
resonant circuit.
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Linear Circuits

• A linear circuit is one whose output is linearly

related (or directly proportional) to its input Fig.

1

• Linear circuits obey both the properties of

homogeneity (scaling) and additivity.

v
V0

I0

i



Linearity Property

Homogeneity property (Scaling)

iRvi =→

kiRkvki =→

Additivity property

Rivi 222 =→

Rivi 111 =→

21212121 )( vvRiRiRiiii +=+=+→+



Linear Circuits

• Linear circuit consist of 

– linear elements 

– linear dependent sources

– independent sources 
mA1mV5

A2.0V1

A2V10

==

=→=

=→=

iv

iv

iv

s

s

s

nonlinear
R

v
Rip :

2
2 ==



• We also will classified sources as Independent and

Dependent sources
• Independent source establishes a voltage or a current in a

circuit without relying on a voltage or current elsewhere in

the circuit
• Dependent sources establishes a voltage or a current in a

circuit whose value depends on the value of a voltage or a

current elsewhere in the circuit
• We will use circle to represent Independent source and

diamond shape to represent Dependent sources

Independent source Dependent source

Independent  and Dependent sources



• Independent and dependent voltage and current sources can be 

represented as

+

−

Independent voltage source Independent current source

+

−

5 

V

3 

A

Dependent voltage source

Voltage depend on current

Dependent current source

Current depend on voltage

4 ix    

V
4 vx

Awhere ix is some 

current

through an 

element

where vx is some 

voltage

across an element



+

−

4 vx

V
7 ix    

A

where vx is some 

current

through an 

element

where ix is some 

voltage

across an element

The dependent sources can 

be also as

Dependent voltage source

Voltage depend on voltage
Dependent current source

Current depend on current



Superposition Principle

• Because the circuit is linear we can find the response of

the circuit to each source acting alone, and then add them

up to find the response of the circuit to all sources acting

together. This is known as the superposition principle.

• The superposition principle states that the voltage across

(or the current through) an element in a linear circuit is

the algebraic sum of the voltages across (or currents

through) that element due to each independent source

acting alone.



Turning sources off

a

b

si
si i=

Current source:

We replace it by a 

current source 

where

0si 

An open-circuit

Voltage source:

DC

+

-

sv v=sv

We replace it by a 

voltage source 

where

0sv 

An short-circuit

i



Steps in Applying the Superposition 

Principle 

1. Turn off all independent sources except one. Find the
output (voltage or current) due to the active source.

2. Repeat step 1 for each of the other independent sources.

3. Find the total output by adding algebraically all of the
results found in steps 1 & 2 above.

• In some cases, but certainly not all, superposition can 

simplify the analysis.



Superposition

=
The branch 

currents i1, i2, i3

and i4

The branch 

currents resulting 

from the 120 V 

voltage source

i'1, i'2, i'3 and 

i'4

The branch 

currents resulting 

from the 12 A 

current source

i"1, i"2, i"3 and 

i"4

+



Please, solve it using 

the node-voltage method



DC 12V

 




3A

i

DC

24V

Example: In the circuit below, find the current i by 

superposition 

Turn off the 3A & 12V 

sources:

3i

 





3i

2i

O.C.

DC

24V



2

3

4 8 4 4 24

4 4 3 0

i

i

+ + − −    
=    

− +    

2 316 4 24i i− = −

2 34 7 0i i− + =

2 3

7

4
i i= ( )3 28 4 24i − = −

3 1i = −

3i

 





3i

2i

O.C.

DC

24V



DC 12V

 




3A

i

DC

24V

12V

 




3A

1i

1v
2v

1 1i =
2 2i =

2i

DC 12V

 





2i

1i

O.C.

3 1i = −

3i

 





3i

2i

O.C.

DC

24V

1 2 3 1A 2A 1A 2Ai i i i= + + = + − =
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Thevenin's Theorem

Linear

Circuit

+

-

V
Variable

R

b

a

• In many applications we want to find the response to a

particular element which may, at least at the design stage,

be variable.

• Each time the variable element

changes we have to re-analyze the

entire circuit. To avoid this we

would like to have a technique that

replaces the linear circuit by

something simple that facilitates the

analysis.• A good approach would be to have a simple equivalent

circuit to replace everything in the circuit except for the

variable part (the load).



Thevenin's Theorem

• Thevenin’s theorem states that a linear two-terminal

resistive circuit can be replaced by an equivalent circuit

consisting of a voltage source VTh in series with a resistor

RTh, where VTh is the open-circuit voltage at the terminals,

and RTh is the input or equivalent resistance at the

terminals when the independent sources are all turned

off.

Linear

Circuit

b

a

inR

LR

i

DC

b

a

inR

LR

i

ThR

ThV



Linear

Circuit

b

a

inR

LR

i

DC

b

a

inR

LR

i

ThR

ThV

• Thevenin’s theorem states that the two circuits

given below are equivalent as seen from the load RL

that is the same in both cases.

VTh = Thevenin’s voltage = Vab with RL

disconnected (= ) = the open-circuit voltage = 

VOC

Thevenin's Theorem



Linear

Circuit

b

a

inR

LR

i

DC

b

a

inR

LR

i

ThR

ThV

RTh = Thevenin’s resistance = the input resistance with all

independent sources turned off (voltage sources replaced

by short circuits and current sources replaced by open

circuits). This is the resistance seen at the terminals ab

when all independent sources are turned off.

Thevenin's Theorem



Why are Independent energy sources kept off while 

calculating the Thevenin’s equivalent resistance of a 

two port circuit ?

• We can do that only with linear circuits where the
principle of superposition is applicable.

• The reason is that an independent source does not
have a finite impedance to affect your calculations
and will not impact the impedance of any other
branch.

• At a mathematical level it boils down to linear
superposition with voltages and currents being the
variables and impedances being the coefficients.



• Thevenin’s theorem can be used to:

– Analyze networks with sources that are not in series or

parallel.

– Reduce the number of components required to establish

the same characteristics at the output terminals.

– Investigate the effect of changing a particular component

on the behavior of a network without having to analyze

the entire network after each change.

Thevenin’s Theorem



• Any complex two-terminal circuit can be replaced by an 
equivalent circuit consisting of a voltage source VTh and a 
series resistor RTh.

Thevenin’s Theorem

• The Thevenin equivalent circuit provides an

equivalence at the terminals only.

− The internal construction and characteristics of the original

network and the Thévenin equivalent are usually quite

different.

Thévenin Equivalent CircuitOriginal Circuit



• ETh is the open circuit voltage at the terminals.

• RTh is the input or equivalent resistance at the 

terminals when the sources are turned off.

Original Circuit Thevenin’s Equivalent Circuit

Thevenin’s Theorem



Experimental Procedures

• Two popular experimental procedures for determining the

parameters of the Thevenin’s equivalent network:

1) Direct Measurement of ETh and RTh

• For any physical network, the value of ETh can be

determined experimentally by measuring the open-

circuit voltage across the load terminals.

• The value of RTh can then be determined by

completing the network with a variable resistance

RL.

Thevenin’s Theorem



2) Measuring VOC and ISC

– The Thevenin’s voltage is again determined by
measuring the open-circuit voltage across the
terminals of interest; that is, ETh = VOC. To
determine RTh, a short-circuit condition is
established across the terminals of interest and
the current through the short circuit (Isc) is
measured with an ammeter.

– Using Ohm’s law:

RTh = Voc / Isc

Thevenin’s Theorem



Steps to follow for finding VTH and RTH:

1. Remove the load & 

2. Label the terminals a and b. 

3. Solve for RTH by setting all sources to zero.

4. Solve for VTH by returning all sources to their 

original position and finding the open-circuit 

voltage between a and b.

5. Draw the new equivalent circuit. 

Thevenin’s Theorem



Steps 1 & 2 :

Convert to a Thevenin’s circuit:

1. Identify and remove the load from the circuit.

2. Label the resulting open terminals. 

Thevenin’s Theorem



Step 3:

Solve for RTH and isolate the resistance from the 

source.

Set all sources to zero:

•Replace voltage sources with shorts.

•Replace current sources with opens.

Thevenin’s Theorem



Zeroing Sources

Step-3: “Zeroing” a source means setting its 

value equal to zero.

Voltage Sources Become

Short-Circuits

Current Sources Become

Open-Circuits

• Current sources – 0 A is equivalent to 

a open-circuit.

• Voltage sources – 0 V is equivalent to a 

short-circuit.



Step- 3:

• With the load disconnected, turn off all source.

• RTh is the equivalent resistance looking into the 

“dead” circuit through terminals a-b.

Rth

Thevenin’s Theorem



Step- 3: Set all sources to zero, and 

calculate RTh . 1
1 1

31
80 60 40

TH abR R

−

 
= = + =  

+ 

Thevenin’s Theorem

Remember, 

calculate RTH

from the a 

and b 

perspective!



Thevenin’s Theorem

Step-4 : Solve for VTH and then, as needed:

•Calculate the voltage (VLD) across the RLD.

•Calculate the current (ILD) through RLD.

40

40 4.44

( )

40
* 20 *

40 80 60

TH

TH

TH ab

T

V

V

VDR E V V

R
V E V

R


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→ = = =


= =

+ + 

Th
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Th LD

E
I

R R
=

+
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Th LD

R
V E
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=
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Step-5:

REDRAW the circuit showing the Thèvenin equivalents 
(VTH and RTH) with the load installed.

Thevenin’s Theorem



• In finding the Thevenin’s resistance RTh, we need to 

consider two cases:

• If the network has no dependent sources, we turn 

off all independent sources. RTh is the input 

resistance of the network looking between 

terminals a and b.

• If the network has dependent sources, we turn off 

all independent sources. We apply a voltage source 

vo at the terminals a and b determine the resulting 

current io. 

Finding VTh and RTh

Thevenin’s Theorem



•Then RTh= vo/io as shown below. Alternatively, we may

insert a current source io at terminals a-b and find the

terminal voltage vo. Again RTh= vo/io (either of the two

approaches will give the same result.)

Thevenin’s Theorem



• Important of Thevenin’s theorem- helps simplify a circuit (a large 

circuit may be replaced by a single independent voltage source and a 

single resistor)

• The current IL through the load and the voltage VL across the load 

are easily determined once the Thevenin’s equivalent of the circuit 

at the load’s terminals is obtained. :

Th

LTh

L
LLL

LTh

Th
L

V
RR

R
IRV

RR

V
I

+
==

+
=

Note: A negative RTh value shows that the 

circuit is supplying power (circuit with 

dependent source)

Thevenin’s Theorem



Problem 1

• Find the Thevenin equivalent circuit external to RLD.  

Determine ILD and VLD when RLD = 2.5 Ω.

1/2. Remove the load label the terminals 

a and b.

3. Solve for RTH.

4. Solve for VTH.

5. Draw the new equivalent circuit. 

15

Ω
9

Ω

a

b

RTH = 

18.6Ω

= 

2.5

Ω

Th
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Th LD

E
I

R R
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LD Th

Th LD

R
V E

R R
=

+

2.5
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LDV V V= =
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15 18.6

1 1

6 9

TH abR R

 
 

= = + =  
 +
 

9
9 6

9
( ) * 10 *

6 9
TH ab

T

V
R

VDR E V V E V
R


 =


→ = = = =

+ 



• Find the Thevenin equivalent circuit 

external to RLD and determine ILD.  

Problem 2

RTH = 

70kΩ

= 

180k

Ω

ETH = 

5V

Th
LD

Th LD

E
I

R R
=

+

5
20

70 180
LD

V
I A

k k
= =

+

20 50 70TH abR R k k k= = + = 

5050 50 5* 100 *S kTH ab k R k VE V V I A  == = = =



Fig. 1: Application of Thevenin’s theorem. (a) Actual circuit with terminals A and B across RL. (b) 

Disconnect RL to find that VAB is 24V. (c) Short-circuit V to find that RAB is 2Ω.

Thevenin’s Theorem



Fig. 1 (d) Thevenin equivalent circuit. (e) Reconnect RL at terminals A and B to find that VL is 12V.

Thevenin’s Theorem



Fig. 2: Thevenizing the circuit of Fig.1 but with a 4-Ω R3 in series with the A terminal. (a) VAB is still 

24V. (b) Now the RAB is 2 + 4 = 6 Ω. (c) Thevenin equivalent circuit. 

Note that R3 does not change the value of VAB

produced by the source V, but R3 does increase the 

value of RTH.

Thevenin’s Theorem



Determining RTh for the network



Determining ETh   for the network,

Substituting the Thevenin equivalent circuit for the network 

external to RL



Example (2)

• Find the Thevenin’s equivalent circuit of the 

circuit shown in Fig , to the left of the 

terminals a-b. Then find the current through RL

= 6,16,and 36 .
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Example (3)

• Find the Thevenin’s equivalent of the circuit 

in Fig. at terminals a-b.



• (independent + dependent source case)

Fig(a) :findTo ThR

0sourcetindependen →

intact→sourcedependent

,V1=ov
oo

o

ii

v
R

1
Th ==



• For loop 1,

2121 or0)(22 iiviiv xx −==−+−

214But iivi x −==−

21 3ii −=



:3and2 Loop

0)(6)(24 32122 =−+−+ iiiii

012)(6 323 =++− iii

gives equations  theseSolving

.A6/13 −=i

A
6

1
But 3 =−= iio

== 6
1

Th

oi

V
R



=−+− 0)(22 23 iivx

51 =i

Fig(b):getTo ThV

23 iivx −=

analysisMesh

=+−+− 06)(2)(4 21212 iiiii 02412 312 =−− iii

.3/102 =i

V206 2Th === ivV oc

xvii =− )(4But 21



Example (4)

• Determine the Thevenin’s

equivalent circuit in 

Fig.4.35(a).

• Solution )caseonlysourcedependent(

o

o

i

v
R =Th0Th =V

:anaysisNodal

4/2 oxxo viii +=+



22

0 oo
x

vv
i −=

−
=But

4424
oooo

xo

vvvv
ii −=+−=+=

oo iv 4or −=

:4Thus Th −==
o

o

i

v
R powerSupplying







Thevenizing a Circuit  with Two Voltage Sources

• The circuit in Figure 3 can be solved by Kirchhoff’s 

laws, but Thevenin’s theorem can be used to find the 

current I3 through the middle resistance R3. 

– Mark the terminals A and B across R3.

– Disconnect R3.

– To calculate VTH, find VAB across the open terminals



Thevenizing a Circuit with Two Voltage Sources

Fig. 3: Thevenizing a circuit with two voltage sources V1 and V2. (a) Original circuit with terminals A and 

B across the middle resistor R3. (b) Disconnect R3 to find that VAB is −33.6V. (c) Short-circuit V1 and V2 to 

find that RAB is 2.4 Ω. (d) Thevenin equivalent with RL reconnected to terminals A and B.



Thevenizing a Bridge Circuit

• A Wheatstone Bridge Can Be
Thevenized.

• Problem: Find the voltage
drop across RL.

• The bridge is unbalanced and
Thevenin’s theorem is a good
choice.

• RL will be removed in this
procedure making A and B the
Thevenin terminals.



Fig. 4(b) Disconnect RL to find VAB of −8 V. (c) With source V short-circuited, RAB is 2 + 2.4 = 4.4 Ω. 

VAB = −20 −(−12) = −8V

RAB = RTA + RTB = 2 + 2.4 = 4.4 Ω

Thevenizing a Bridge Circuit



Fig. 4(d) Thevenin equivalent with RL reconnected to terminals A and B.

Thevenizing a Bridge Circuit
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Norton's Theorem

• Formally, Norton’s Theorem states that a linear two terminal

resistive circuit can be replaced by an equivalent circuit

consisting of a current source IN in parallel with a resistor

RN, where IN is the short-circuit current through the

terminals, and RN is the input or equivalent resistance at the

terminals when all independent sources are all turned off.



v

i

Vth

-IN

Slope=1/RN



• A linear two-terminal circuit can be replaced 

with an equivalent circuit of an ideal current 

source, IN, in series with a resistor, RN.

– IN is equal to the short-circuit current at the 

terminals.

– RN is the equivalent or input resistance when the 

independent sources are turned off.

Norton's Theorem



Definitions for Norton’s Theorem

Open-circuit voltage Isc is the current, i, when the load is a short 

circuit (i.e., RL = 0W).

NSC II =



 Input resistance is the resistance seen by the 

load when IN = 0A.  

 It is also the resistance of the linear circuit 

when the load is an open circuit (RL = ∞W).NOCNin IVRR ==

Definitions for Norton’s Theorem



Steps to Determine IN and RN

1. Identify the load, which may be a resistor or a 
part of the circuit.

2. Replace the load with a short circuit .

3. Calculate ISC.  This is IN.

4. Turn off all independent voltage and currents 
sources.

5. Calculate the equivalent resistance of the circuit.  
This is RTH.
 The current through and voltage across the load in 

parallel with IN and RN is the load’s actual current and 
voltage in the originial circuit.



Norton's Theorem



Source Conversion (Transformation)

• A Thevenin’s equivalent circuit can easily be 

transformed to a Norton equivalent circuit (or 

visa versa).

– If RTh = RN, then VTh = RNIN and IN = VTh/RTh



Example (5)

• Find the Norton equivalent circuit of the 

circuit in Fig .
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Example (6)

Using Norton’s theorem, find RN and IN of the 

circuit in Fig. at terminals a-b.
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• A Wheatstone Bridge Can Be Nortonized.

Fig. (a) Original circuit. (b) Short circuit across terminals A and B.

Norton's Theorem



• The Norton Equivalent Circuit
– Replace R2 with a short and determine IN.

– Apply the current divider.

– Apply KCL.

– RN = RTH.

– The current source provides 12 A total flow, regardless 
of what is connected across it. With no load, all of the 
current will flow in RN. When shorted, all of the 
current will flow in the short.
• Connect R2.

• Apply the current divider.

• Use Ohm’s Law.

Norton's Theorem



Fig. (c) The short-circuit current IN is 36/3 = 12 A. (d) Open terminals A and B but short-

circuit V to find RAB is 2 Ω, the same as RTH.

Norton's Theorem



Fig. (e) Norton equivalent circuit. (f) RL reconnected to terminals A and B to 

find that IL is 6A.

IL = IN x RN/RN + RL = 12 x 

2/4 = 6 A

Norton's Theorem



Example (7)

• Find the Norton equivalent circuit to the left of terminals A-

B for the network shown below. Connect the Norton

equivalent circuit to the load and find the current in the 50

 resistor.

+_

20 

60 

40 

50 

10 A

50 V

•

•

A

B

Figure 1 :  Circuit for Example (7)



+_

20 

60 

40 

10 A

50 V
ISS

Figure 2:  Circuit for find 

INORTON.
It can be shown by standard circuit 

analysis that

10.7SSI A=



• It can also be shown that by deactivating the sources, We 

find the resistance looking into terminals A-B is

55NR = 

• RN and RTH will always be the same value for a given 

circuit. The Norton equivalent circuit tied to the load is 

shown below.

10.7 A 55  50 

Figure 3: Final circuit for Example (7)



Example (8) 

• For the circuit shown below, find the Norton 

equivalent circuit to the left of terminals A-B.

+_5 V

1 k

3 VX 25 IS

+

_

VX

A

B

IS

40 

Figure 4:  Circuit for Example (8).



+_5 V

1 k

3 VX 25 IS

+

_

VX

A

B

IS

40 

We first find;

SS

OS
N

I

V
R =

We first find VOS:

SSXOS IIVV 1000)40)(25( −=−==



+_5 V

1 k

3 VX 25 IS

+

_

VX

A

B

IS

40  ISS

Figure 5:  Circuit for find ISS, Example (8).

We note that ISS = - 25IS. Thus,

=
−

−
== 40

25

1000

S

S

SS

OS
N

I

I

I

V
R



+_5 V

1 k

3 VX 25 IS

+

_

VX

A

B

IS

40 

Figure 6:  Circuit for find VOS, Example (8).

From the mesh on the left we have;

0)1000(310005 =−++− SS II
From which,

mAIS 5.2−=



We saw earlier that,

SSS II 25−=

Therefore;

mAISS 5.62=

The Norton equivalent circuit is shown below.

IN = 62.5 mA RN = 40 

A

B

Norton Circuit for Example (8)
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• In some applications, the purpose of a circuit is to
provide maximum power to a load.

• Some examples:

• Stereo amplifiers

• Radio transmitters

• Communications equipment

• The question is: If you have a system, what load
should you connect to the system in order for the
load to receive the maximum power that the system
can deliver?

Maximum Power Transfer



Maximizing PLD

• How might we determine RLD such that PLD is 

maximized? 

2

2 Th

Th

LD LD LD LD

LD

V
P I R R

R R

 
= =  

+ 



• Maximum power is transferred to the load when

the load resistance equals the Thevenin’s

resistance as seen from the load (RLD = RTh).

– When RLD = RTh, the source and load are said to be

matched.

Maximum Power Transfer



Maximizing PLD

• As RLD increases, a higher percentage of the total

power is dissipated in the load resistor.

• But since the total resistance is increasing, the

total current is dropping, and a point is reached

where the total power dissipated by the entire

circuit starts dropping.
2

2 Th

Th

LD LD LD LD

LD

V
P I R R

R R

 
= =  

+ 



DC

b

a

LR

i

ThR

ThV

The  power delivered to the load (absorbed by RL) is 

( )
22

L Th Th L Lp i R V R R R = = + 

This power is maximum when 

( ) ( )
2 32 2 0Th Th L L Th L

L

p
V R R R R R

R

− −  = + − + =
 

0Lp R  =

RLD and RL both are same



( ) ( )
2 32 2 0Th Th L L Th L

L

dp
V R R R R R

dR

− − = + − + =
 

2Th L LR R R+ =

L ThR R=

( )
2

max
L Th

Th Th L L R R
p V R R R

=
 = + 

( )
2 2

max 2 4Th Th Th Th Thp V R R V R = = 

Thus, maximum power transfer takes place when 

the resistance of the load equals the Thevenin 

resistance RTh.  Note also that

Thus, at best, one-half of the power is dissipated 

in the internal resistance and one-half in the load.



• The total power delivered by a supply such as ETh

is absorbed by both the Thevenin’s equivalent
resistance and the load resistance.

• Any power delivered by the source that does not get
to the load is lost to the Thevenin’s resistance.

Maximum Power Transfer



Example

• Find the value of RL for maximum power 

transfer in the circuit of Fig. 4.50. Find the 

maximum power.



=

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18

126
512632THR



W
R

V
p

RR

VVVii

Aiii

L

TH

THL

THTHi
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22
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220)0(231612

2   ,121812
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Example

a) Find the Thevenin’s equivalent circuit to the left of terminals a-b.  

b) Calculate the maximum power transfer to the load if RLD = RTH.

c) Determine the power dissipated by RLD for load resistances of 2 and 6. 

1

Ω12

Ω

a

b

4

Ω

1
1 1

a) 1 4
4 12

TH abR R

−

 
= = + + =  

 

2

LD THb) When R  = R

4
Th

MAX

Th

P
R

V =

12
12 30

12
( ) * 40 *

4 12
TH ab

T

V
R

VDR E V V E V
R


 =


→ = = = =

+ 

LD TH

2

2 Th

Th

c) When R   R

*  OR L L L L LD

LD

V
P I R P R

R R



 
= =  

+ 

TH TH

2 2

Th

Th

For the 2  load and because we already 

calculated V  and R  let's use:

30
*2 50

4 2
L LD

LD

V V
P R W

R R



   
= =  =   

+ +   

( )
2

2

Now, for the 6  load, and just to show it works let's use:

30
* *6 54

4 6
L L LD

V
P I R W



 
= =  = 

+  



Example

A stereo is rated for max output power of 150W per channel when RLD = 8Ω

a) Sketch the Thevenin’s Equivalent circuit.

b) What would the output power be with two 8Ω speakers as the load and are 
connected in parallel to one of the channels?

RTH = 

8Ω = 

8

Ω

2

b) We know that 
4

Th

MAX

Th

P
R

V=

TH

2

Rearrange the above and solve for V :

*4TH MAX ThV P R=

RTH = 

8Ω

= 

8Ω//8

Ω

=4Ω

*4 150 *4*8 69.28TH MAX ThV P R W V= =  =

L

Now, to caculate output power for the two 8Ω resistors in parallel, 

calculate R  (8//8 = 4 ), 

TH TH

2 2

Th

Th

L MAX

and because we already know V  and R  let's use:

69.28
*4 133.3

8 4

You should note, P  for this case is less than P .

L LD

LD

V V
P R W

R R

   
= =  =   

+ +   
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Millman's theorem

• The application of Millman's theorem, any number of

parallel voltage sources can be reduced to one.

• In Figure, the three voltage sources can be reduced to one.

This permits finding the current through or voltage across

RL without having to apply a method such as mesh analysis,

nodal analysis, superposition, and so on.

Figure: Demonstrating the effect of applying Millman's 

theorem.



Step 1: Convert all voltage sources to current sources.

Figure: Converting all the voltage sources to 

current sources.

Millman's theorem



Figure: Reducing all the current sources into a 

single current source.

Millman's theorem



Step 3: Convert the resulting current source to a voltage source, 

and the desired single-source network is obtained.

Figure: Converting the single current source into a 

single voltage source.

Millman's theorem



In general, Millman's theorem states that for any number of 

parallel voltage sources,

The equivalent resistance is, 

or

Millman's theorem



In terms of the resistance values,

and

Millman's theorem



Millman's theorem

FIG. 1 Example (9)
FIG. 2 The result of applying 

Millman's theorem to the 

network in Fig. 1.



FIG. 3 Example (10).

FIG. 4 Converting the sources in Fig. 

3 to current sources.
FIG. 5 Reducing the current 

sources in Fig. 4 to a single 

source.

FIG. 6 Converting the 

current source in Fig. 5 to 

a voltage source.



FIG. 7 The dual effect of Millman's theorem.
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Reciprocity theorem

• The reciprocity theorem is applicable only to single-source

networks.

• The theorem states the following:

“The current I in any branch of a network due to a

single voltage source E anywhere else in the network will

equal the current through the branch in which the source was

originally located if the source is placed in the branch in

which the current I was originally measured.”

Figure 8: Demonstrating the impact of the reciprocity 

theorem.



• The location of the voltage source and the resulting current

may be interchanged without a change in current.

• The theorem requires that the polarity of the voltage source

have the same correspondence with the direction of the

branch current in each position.

• In the representative network in Figure(a), the current I due 

to the voltage source E was determined. If the position of 

each is interchanged as shown in Figure(b), the current I 

will be the same value as indicated.

Reciprocity theorem



• To demonstrate the validity of this statement and the theorem,

consider the network of Fig-9, in which values for the elements

have been assigned.

The total resistance is

Fig-

9

And 



For the network of Fig-10,

Fig-10
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Substitution theorem

The substitution theorem states the following:

• If the voltage across and the current through any branch of a

dc bilateral network are known, this branch can be replaced by

any combination of elements that will maintain the same

voltage across and current through the chosen branch.

• The theorem states that for branch equivalence, the terminal 

voltage and current must be the same.



• Consider the circuit in Figure11, in which the voltage across 

and current through the branch a-b are determined.

Substitution theorem



FIG. 12. Equivalent branches for the branch a-b in Fig.11 .

Substitution theorem



FIG. 13 Demonstrating the effect of knowing a voltage at some point in a complex 

network.

Substitution theorem



FIG. 14 Demonstrating the effect of knowing a current at some point in a complex network.

Substitution theorem
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 It is one of the important theorems in Network Analysis , which finds

it’s application mostly in calculating the sensitivity of electrical

networks & bridges and solving electrical networks.

 The Compensation Theorem states that :-

“For the sake of branch responses calculations ; Any resistance in a

branch of an linear bilateral electrical network can be replaced by a

voltage source which provides the same voltage as the voltage dropped in

the resistance.”

• In any linear bilateral Electrical Network, If in any Branch have it’s

initial resistance (or impedance in case of AC) “R” conducting a

current of “I” through it, and if the resistance of the branch is changed

by a factor of R , with it’s final resistance R+ R , the final effect in

various branches due to the change in the resistance of the branch can

be calculated by injecting an extra voltage source along with the

resistance in modified branch.

Compensation theorem



 The above statement can be clarified with the following illustration.

 In Fig(a) , the current “I” flows through R3 when V1 acts upon it. In Fig 

(b) , the R3 is changed to R4 where R4=R3+dR , or R3 is increased by dR. 

This can also be thought of as an extra dR added in series with R3. Now , 

we don’t know how much current flows through the branch when R3 is 

increased by dR , so to calculate the current flowing through the branch 

due to the effect of dR , as per Compensation theorem in Fig (c). we add an 

extra V=-I.dR along with R4 and calculate the current flowing through the 

branch due to the V or dR to be -dI.



 Now in Fig (d) we add the currents in Fig. (a) and (c) using superposition 

theorem to find the new current to be I-dI.



Problem : Calculate the values of new currents in the network illustrated below when the resistor R

increased by 30 %.

Solution:
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• Tellegen’s Theorem states that the summation 
of power delivered is zero for each branch of 
any electrical network at any instant of time. 
It is mainly applicable for designing the filters in 
signal processings. 

• It is also used in complex operation systems for 
regulating the stability. It is mostly used in the 
chemical and biological system and for finding 
the dynamic behaviour of the physical network.



Tellegen’s Theorem

• If there are b branches in a lumped circuit, and 

the voltage uk, current ik of each branch apply 

passive sign convention, then we have 


=

=
b

k

kkiu
1

0



Inference of Tellegen’s Theorem

• If two lumped circuits    and     have the same topological 

graph with b branches, and the voltage, current of each 

branch apply passive sign convention, then we have not 

only
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Code No: R19ES1217 

I B. Tech II Semester Regular Examinations, December - 2020 

ELECTRICAL CIRCUIT ANALYSIS-I 
(Electrical and Electronics Engineering) 

Time: 3 hours  Max. Marks: 75 

Answer any five Questions one Question from Each Unit 

     All Questions Carry Equal Marks 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. a) Find i0 in the circuit of figure by using source transformation method. 

Figure 

(8M) 

b) By using nodal analysis, find all the node voltages of the circuit of figure.

Figure 

(7M) 

Or 

2. a) What is the equivalent resistance between the terminals AB of the figure? 

Figure 

 

(8M) 
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 b) Find the mesh currents i1, i2, and i3 in the network of figure.  
 

 
Figure  

 

(7M) 

    

3. a) Two identical coupled coils have an equivalent inductance of 80 mH when 

connected series aiding and 35 mH in series opposing. Find L1, L2, M and K. 
 

(7M) 

 b) A teroidal core made of cast steel has a mean circumference of 1.2 m and cross 

sectional area of 4x10
–4

 m
2
. A coil of 600 turns is wound on the core and the 

current in the coil is 6A. (i) determine the flux in the core (ii) calculate the width 

of an air gap to be cut radially in the core if it is desired to limit the flux in the 

core to 0.4 mWb.  

(8M) 

  
 

Or 
 

 

4. a) Explain self and mutual inductance in coupled magnetic circuits. (8M) 

 b) Calculate the phasor currents i1 and i2 in the circuit of figure, assume R1=10 Ω, 

R2=15 Ω, L1 = 0.1 H, L2=0.5 H, M=0.12, ω=100 rad/sec, Vs=120 V∠0
0
 and 

1/jωC = –j50 Ω.  

 
Figure 

 

(7M) 

    

5. a) Three circuit elements are connected in series and the voltages across them are 

given byv1 = 50 sin ωt; v2=40 sin (ωt+60
0
) and v3=60 sin (ωt – 30

0
). Determine 

the total voltage across the series combination and its phase angle with respect to 

vl. 
 

(8M) 

 b) A capacitor of 80 µF capacitance takes a current of 1 A when supplied with 250 

V (rms). Determine (i) the frequency of the supply, and (ii) the resistance which 

must be connected in series with this capacitor in order to reduce the current to 

0.5 A at this frequency. 

(7M) 

  Or  

6. a) A circuit consists of a 100 Ω resistance in parallel with a 25 µF capacitor 

connected to a 250V, 50Hz supply. Calculate (i) the current flowing in 

each branch, (ii) the total current drawn from the supply, (iii) the 

impedance of the circuit, and (iv) the phase angle of the circuit. 

 

 

(8M) 
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 b) Three coils are connected in parallel across a 250V supply. Their  

impedances are (10+j30) Ω, (20+j0) Ω and (1–j20) Ω. Determine (i) 

the current drawn from the supply and (ii) the power factor of the circuit. 

(7M) 

    

7. a) A coil of inductance L and resistance R in series with a capacitor is supplied at a 

constant voltage from a variable frequency source. If the frequency is ωr, find in 

terms of L, R and ωr the values of those frequencies at which the circuit current 

would be half as much as that at resonance and determine the bandwidth and 

selectivity of the circuit. 
 

(8M) 

 b) The impedance Z1 = (5 + j3) Ω and Z2 = (10 – j30) Ω are connected in parallel. 

This parallel branch is connected in series with impedance of (R3 – jX3) Ω. Find 

the value of X3 which will produce resonance.  
 

(7M) 

  Or  

8. a) For the parallel resonant network of figure (i) Determine the resonant frequency 

fp. (ii) Find the total impedance at resonance. (iii) Calculate the quality factor, 

bandwidth, and cutoff frequencies f1 andf2 of the system. 
 

 
Figure 

 

(8M) 

 b) Given a series RLC circuit resonant at 250 kHz with R = 10
4
 Ω and L = 200 mH. 

(i) Calculate the value of C, (ii) band width (iii) half power frequencies (iv) the 

frequency at which the impedance has an angle of +30
0
.  

(7M) 

    

9. a) Find the Norton’s equivalent circuit for the network external to the elements 

between a and b for the network of figure.  

 

Figure 
 

 

 

 

(8M) 
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 b) Find the load impedance RL for the network of figure for maximum power to the 

load, and find the maximum power to the load. 

 

Figure 

(7M) 

   

Or 
 

 

10. a) Find the Thevenin’s equivalent circuit for the portions of the networks of figure. 

external to the elements between points a and b 

 

Figure 

 

(8M) 

 b) For the circuit in figure use super position theorem to find i, Calculate power 

delivered to the 3 Ω resistor.  

 

 
Figure 

(7M) 

 

  

4 of 4 
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I B. Tech II Semester Regular Examinations, December - 2020 

ELECTRICAL CIRCUIT ANALYSIS-I 
(Electrical and Electronics Engineering) 

Time: 3 hours                                                        Max. Marks: 75 
 

Answer any five Questions one Question from Each Unit 

                All Questions Carry Equal Marks 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

1. a) Find i0 in the circuit of figure by using source transformation method.  
 

 

Figure 
 

(8M) 

 b) By using mesh analysis find i0 and vab in the circuit of figure. 
 

 
Figure 

 

(7M) 

  Or 

 

 

2. a) Determine equivalent resistance Rab in the circuit shown in figure all resistors 

have a value of 30 Ω.  
 

 

Figure  

 

 

 

(8M) 
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 b) By using nodal analysis, find v0 and i0 in the circuit of figure.  
 

 
Figure  

 

(7M) 

    

3. a) Two coupled coils have these data: L1 = 0.1 H, L2=0.4 H, M=0.15 H  

(coupling additive) ω=100 rad/sec, when V1=1000 V∠0
0
, I1=50 ∠36.90

 A. 

Calculate V2.  
 

(7M) 

 b) A magnetic circuit consists of an iron ring of mean circumference 80 cm with 

cross-sectional area of 12 cm
2
 throughout. A current of 2A in the magnetizing 

coil of 200 turns produce a total flux of 1.2 mWb in the iron. Calculate: (i) the 

flux density in the iron (ii) the absolute and relative permeability of iron. (iii) the 

reluctance of the circuit. 

(8M) 

  Or  

4. a) Derive the expression for equivalent inductance of a magnetically coupled two 

coils connected in series, when two coils are (i) aiding each other 

(ii) Opposing each other.  
 

(8M) 

 b) Two coils have a mutual inductance of 0.5 H. if the current in one coil is varied 

from 4A to 2A in 0.4 sec, calculate (i) The average e.m.f. induced in the second 

coil (ii) The rate of change of flux linked with the second coil assuming that it is 

wound with 400 turns. 

(7M) 

    

5. a) A coil of inductance 15.9 mH and resistance 9 Ω is connected in parallel  

with a coil of inductance 38.2 mH and resistance 6 Ω across a 250 V, 50 Hz  

supply. Determine (i) the conductance, susceptance and admittance of the  

circuit, (ii) the current drawn from the supply and (iii) the total power  

consumed in kW. 
 

(8M) 

 b) Two coils A and B are connected in series across a 250 V, 50 Hz supply. The 

resistance of coil A is 10 Ω and inductance of coil B is 0.015 H. If input from the 

supply is 3 kW and 2 kVAR, find the resistance of coil B and inductance of coil 

A. Also calculate voltage across each coil. 

(7M) 

   

Or 
 

 

6. a) A coil of inductance 0.08 H takes a current of 5 A when connected in series with 

a 50 µF loss-free capacitor across a 250 V, 50 Hz supply. Calculate (i) resistance 

of the coil (ii) power factor of the coil (iii) the overall power factor. Sketch the 

phasor diagram. 

 

 

 

(8M) 
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 b) Three impedances (2+j4) Ω, (3–j5) Ω and (1–j3)Ω are connected in parallel. The 

combination is in series with a coil of resistance 3 Ω and inductance 0.02H to 

250V, 50Hz supply. Find (i) The complex expression for the total impedance of 

the circuit. (ii) Current taken from the supply. 

(7M) 

   
 

 

7. a) Show that resonant frequency ωr of RLC series circuit is geometric mean of lower 

and upper half-frequencies ω1 and ω2. 
 

(8M) 

 b) A series circuit consists of a 40Ω resistor, a 0.5 H inductor and a variable  

capacitor connected across a 100 V, 50 Hz supply. Calculate (i) the value  

of the capacitance required to give resonance, (ii) the voltages across the  

resistor, the inductor and the capacitor at resonance, and (iii) the Q-factor  

of the circuit. 

(7M) 

  Or 
 

 

8. a) For the parallel resonant network of figure. (i) Determine the resonant frequency, 

fp. (ii) Find the total impedance at resonance. (iii) Calculate the quality factor, 

bandwidth, and cutoff frequencies f1 andf2 of the system. 
 

 
Figure  

 

(8M) 

 b) A series RC circuit having variable R and C= 15 µF is supplied from AC source 

having voltage V=250 V at ω=1000 rad/sec. Draw current locus for sample 

values of R=0,5, 15, 25, 35, 50Ω. 

(7M) 

    

9. a) Determine the Thevenin’s equivalent circuit for the network external to the 4-kΩ 

inductive reactance of figure (in terms of I). 
 

 
Figure  

 

 

 

(8M) 
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 b) Verify the compensation theorem of the circuit in figure, when resistance, R is 

changed from 4 Ω to 2 Ω.  

 

Figure  

 

Or 

(7M) 

    

10. a) Find the load impedance ZL for the networks of figure for maximum power to the 

load, and find the maximum power to the load. 
 

 

Figure 

 

(8M) 

 b) Using Millman’s theorem, determine the current through the 4-kΩ capacitive 

reactance of figure.  

 

 

Figure  

 

(7M) 
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I B. Tech II Semester Regular Examinations, December - 2020 

ELECTRICAL CIRCUIT ANALYSIS-I 
(Electrical and Electronics Engineering) 

Time: 3 hours                                                        Max. Marks: 75 
 

Answer any five Questions one Question from Each Unit 

                All Questions Carry Equal Marks 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

 

1. a) Consider the circuit in figure, find the equivalent resistance across the terminals:  

(i) a-b and (ii) c-d.  
 

 
Figure 

 

(8M) 

 b) By using node analysis, find all the node voltages of the circuit of figure.  

 
Figure 

 

(7M) 

  Or  

2. a) Find i0 in the circuit of figure by using source transformation method.  
 

 

Figure 

 

 

(8M) 
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 b) By using mesh analysis find i0 and vab in the circuit of figure. 
 

 
Figure 

 

(7M) 

    

3. a) The total inductance of two coils is measured to be 13 mH. If one of the coil is 

reversed total inductance is found to be 8 mH. If inductance of one coil is known 

to be 5 mH, calculate inductance of the other coil, the mutual inductance, and the 

coefficient of coupling between the two coils.  
 

(8M) 

 b) Calculate the phasor currents i1 and i2 in the circuit of figure. 
 

 

Figure 

(7M) 

  Or  

4. a) Derive the expression for equivalent inductance of a magnetically coupled two 

coils connected in parallel, when the two coils are (i) Aiding each other  (ii) 

Opposing each other.  
 

(8M) 

 b) Two coupled coils have self-inductances L1=15mH and L2=25mH.The coefficient 

of coupling (K) being 0.8 in the air, find voltage in the second coil and the flux of 

first coil provided the second coil has 500 turns and the circuit current is given by 

i1= 10 sin 314t A.  

(7M) 

    

5. a) A resistance of 50 Ω is connected in series with a variable capacitor across  

a 200 V, 50 Hz supply.  

(a) When the capacitance is set to 50 µF calculate (i) the current drawn from the 

supply, (ii) the voltage across the two elements and (iii) the power factor.  

(b) Find the value of the capacitance when the current is 2 A.  

(c) Determine the value of the capacitance required to give a power factor  

of 0.866 leading. 

 

 

 

(8M) 
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 b) A resistance R, L=0.02H and capacitance C are connected in series. When a 

voltage V=200 cos(2000t–20
0
) V is applied to the series combination, the current 

flowing is 5√2 cos(2000t – 65
0
) A, find R & C.  

 

Or 

(7M) 

   
 

6. a) A series circuit consisting of a 10 Ω resistor, 100mH inductance is driven by a 50 

Hz. AC voltage source of maximum value 100V. Calculate the equivalent 

impedance, rms value of the voltage, form factor of the voltage, current in the 

circuit, the power factor and power dissipated in the circuit.  
 

(5M) 

 b) A capacitor having a reactance of 5 Ω is connected in series with a resistor  

of 10 Ω. This circuit is then connected (a) in series and (b) in parallel with a coil 

of impedance (5+j7) Ω. Calculate for each case (i) the current  

drawn from the supply, (ii) the power supplied, and (iii) the power factor  

of the whole circuit. 

(10M) 

    

7. a) A coil of inductance 80 mH and negligible resistance is connected in series with a 

capacitance of 0.25 µF and a resistor of resistance 12.5Ω across a 100V, variable 

frequency supply. Determine (a) the resonant frequency, and (b) the current at 

resonance. How many times greater than the supply voltage is the voltage across 

the reactances at resonance? 
 

(8M) 

 b) For the parallel resonant circuit of figure, (i) Determine the resonant frequency, 

(ii)Find the total impedance at resonance, (iii) Find quality factor, and (iv) 

Calculate the band width.  
 

 
Figure  

 

(7M) 

  Or  

8. a) A circuit consisting of a coil of inductance 250 mH, having a resistance of  

20 Ω, in parallel with a variable capacitor C is connected to a 200 V, 50 Hz  

supply. Determine (i) the value of C required for the circuit to resonate,  

(ii) the power absorbed at resonance, and (iii) the ratio of the current  

through the capacitor to the supply current at resonance. 
 

(8M) 

 b) A series circuit consisting of an inductance of 0.3 H, having a resistance of  

10 Ω, and a variable capacitor C1 is supplied from a 100 V, variable frequency 

source. (i) Determine the value of C1 necessary for the circuit to operate 

resonantly at 50 Hz. (ii) A second variable capacitor, C2, is now connected in 

parallel with the original circuit and the supply frequency is adjusted to 60 Hz. 

Determine the value of C2 in order that the circuit still operates with minimum 

current. 

(7M) 
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9. a) Use superposition theorem to solve for vx in the circuit of figure.  
 

 
Figure 

(8M) 

 b) Verify the compensation theorem of the circuit in figure, when resistance, R is 

changed from 4 Ω to 2 Ω.      
 

 

Figure 
 

(7M) 

  Or  

10. a) Obtain Norton’s equivalent of the circuit in figure to the left of terminals a-b. Use 

the result to find i.  
 

 
Figure  

(8M) 

 b) Determine the load impedance to replace the inductor, XL of figure to ensure 

maximum power to the load. Using the results, determine the maximum power to 

the load. 

 

Figure 

 

(7M) 
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ELECTRICAL CIRCUIT ANALYSIS-I 
(Electrical and Electronics Engineering) 

Time: 3 hours                                                        Max. Marks: 75 
 

Answer any five Questions one Question from Each Unit 

                All Questions Carry Equal Marks 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

1. a) (i) Consider the circuit shown in figure, calculate va, vb and vab.  

 

 
Figure 

(ii) If the ground is placed at ‘a’ instead of ‘o’ again calculate va, vb and vab. 

 

(10M) 

 b) Solve for V1 and V2 in the circuit of figure.  
 

 
Figure  

 

(5M) 

  Or  

2. a) Find i0 in the circuit of figure by using source transformation method.  
 

 

Figure  

 

 

(8M) 
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 b) For the bridge network in figure, find i0 using mesh analysis. 
 

 
Figure  

(7M) 

  
 

 

3. a) Define coefficient of coupling and derive its expression. (7M) 

 b) A ring has a mean diameter of 21 cm and cross sectional area of 10 cm
2
. The ring 

is made up of semi-circular sections of cast iron and cast steel with each joint 

having reluctance equal to an air gap of 0.2 mm. Find the ampere turns required 

to produce a flux of 0.8 mWb. The relative permeability of cast steel and cast iron 

are 800 & 166 respectively. Neglect fringing and leakage effects. 

(8M) 

   

Or 
 

4. a) Show that the two coupled coils in figure can be replaced by a single coil having 

an inductance of Lab = L1 + L2 + 2M. 

 
Figure 

 

(8M) 

 b) Two magnetically coupled coils have self-inductances of 60 mH and 9.6 mH, 

respectively. The mutual inductance between the coils is 22.8 mH. 
 

(i) What is the coefficient of coupling? (ii) For these two coils, what is the largest 

value that Mutual inductance can have?  

(7M) 

    

5. a) A circuit is supplied from 50Hz mains whose voltage has a maximum  

value of 250V and takes a current whose maximum value is 5A. At a  

particular instant (t = 0) the voltage has a value of 200V and the current is  

then 2A. Obtain expressions for the instantaneous values of voltage and  

current as functions of time and determine their values at an instant  

t = 0.015 s. Determine also the phase difference between them. 
 

(7M) 

 b) A coil of inductance 15.9 mH and resistance 9 Ω is connected in parallel  

with a coil of inductance 38.2 mH and resistance 6 Ω across a 250 V, 50 Hz  

supply. Determine (i) the conductance, susceptance and admittance of the  

circuit, (ii) the current drawn from the supply and (iii) the total power  

consumed in kW. 

(8M) 

  Or  

6. a) A coil is connected in series with a 20 µF capacitor across 250 V, 50 Hz supply. 

The current drawn by the circuit is 8A and power consumed is 200W. Calculate 

inductance of the coil if power factor is (i) lagging and (ii) leading. 

 

 

 

 

(8M) 
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 b) Two coils A and B are connected in series across a 250 V, 50 Hz supply. The 

resistance of coil A is 10 Ω and inductance of coil B is 0.015 H. If input from the 

supply is 3 kW and 2 kVAR, find the resistance of coil B and inductance of coil 

A. Also calculate voltage across each coil. 

 

(7M) 

    

7. a) For the parallel resonant network of figure. (i) Determine the resonant frequency, 

fp. (ii) Find the total impedance at resonance. (iii) Calculate the quality factor, 

bandwidth, and cutoff frequencies f1 andf2 of the system. 
 

 
Figure 

 

(8M) 

 b) A series circuit consisting of an inductance of 0.3 H, having a resistance of  

10 Ω, and a variable capacitor C1 is supplied from a 100 V, variable frequency 

source. (i) Determine the value of C1 necessary for the circuit to operate 

resonantly at 50 Hz. (ii) A second variable capacitor, C2, is now connected in 

parallel with the original circuit and the supply frequency is adjusted to 60 Hz. 

Determine the value of C2 in order that the circuit still operates with minimum 

current. 

(7M) 

  Or  

8. a) A coil having a Q-factor of 100 is connected in parallel with a capacitor of  

100 pF. The circuit resonates at a frequency of 5 MHz. Determine (i) the  

bandwidth of the circuit, (ii) the amount of resistance required to be  

placed in parallel with the capacitor in order to increase the bandwidth to  

250 kHz, and (iii) the amount of resistance required to be placed in series  

with the inductor in order to produce the same bandwidth. 

 

(8M) 

 b) A resistor of 90 Ω resistance is connected in series with a coil of  

inductance 500mH, having a resistance of 10 Ω. This series circuit is  

connected in parallel with a 20 µF capacitance across a 250 V variable  

frequency supply. Determine (i) the resonant frequency of the circuit, (ii)  

the resonant frequency if the 90 Ω resistor is short circuited and (iii) the  

current drawn from the supply in each case. 

(7M) 
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9. a) Calculate the current, I for the network of figure by using superposition theorem.  
 

 
Figure 

 

(8M) 

 b) Using Millman’s theorem, determine the current through the 4-kΩ capacitive 

reactance of figure.  
 

 

Figure  
 

(7M) 

  Or  

10. a) Given the circuit in figure, Obtain Norton’s equivalent circuit as viewed from (i) 

a-b (ii) c-d.  

 

 
Figure 

 

(10M) 

 b) Find the Thevenin’s equivalent circuit shown in figure. 
 

 
Figure 

(5M) 
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ELECTRICAL CIRCUIT ANALYSIS –I 
(Only for EEE) 

Time: 3 hours  Max. Marks: 70 

Answer any five Questions one Question from Each Unit 

     All Questions Carry Equal Marks 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

UNIT-I 

1. a) Explain the following dependent sources:

i) Voltage controlled voltage source    ii) Voltage controlled current source

iii) Current controlled current source   iv) Current controlled voltage source

(7M) 

b) Find the power delivered by all the sources in the following circuit: (7M) 

Or 

2. a) Three equal resistors are connected across a voltage source in series first and in

parallel later. Find the ratio of power delivered by the source in the two cases. 

(7M) 

b) All resistors in the circuit are of 4Ω. Find currents in all resistors and voltage

across current sources by mesh analysis.

(7M) 

UNIT-II 

3. a) Explain the following terms with respect to magnetic circuits:

i) Self-inductance ii) Mutual inductance

ii) Series and parallel magnetic circuits

(7M) 

b) For the circuit shown below, if L1 =0.4 H, L2= 2.5 H, k =0.6, and i1 = 4i2= 20cos

(500t -20
0
) mA.

Evaluate the following quantities at t = 0: 

(i) i2,

(ii) V1, and

(iii) the total energy stored in the system.

(7M) 
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  Or  

4. a) Prove that when two coils of self-inductances L1 and L2 are connected in series 

aiding connection with a mutual inductance M then the total inductance is equal 

to Leqv = (L1 + L2 + 2M). 

(7M) 

 b) For the circuit shown below, determine the phasor currents I1 and I2 

 

 
 

(7M) 

  UNIT-III 
 

 

5. a) A 200 V, 50 Hz. inductive circuit takes a current of 15 A, lagging the voltage by 

45°. Calculate the resistance and inductance of the circuit. 

(7M) 

 b) Find the average and rms value for the following waveform: 

 

(7M) 

  Or  

6. a) Prove that the active power over a complete cycle of current in a purely 

capacitive circuit is zero. 

(7M) 

 b) A 200 V, 120 W lamp is to be operated on 240 V, 50 Hz. supply. Calculate the 

value of the capacitor that would be placed in series with the lamp in order that it 

may be used at its rated voltage. 

 
 

(7M) 

  UNIT-IV 

 

 

7. a) Explain the effect of band width and selectivity in series resonance circuit. (7M) 

 b) A circuit consists of a coil of resistance 100 Ω and inductance 1 H in series with 

a capacitor of capacitance 1 µF. Calculate (i) the resonant frequency, (ii) current 

at resonant frequency and (iii) voltage across each element when the supply 

voltage is 50 V. 

(7M) 
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  Or  

8. a) Draw the locus of I2 and I for the parallel circuit shown below with neat step by 

step explanation: 

 

(7M) 

 b) A coil of resistance 5 Ω and inductance 0.1 H is connected in parallel with a 

circuit containing a coil of resistance 4 Ω and inductance 0.05 H in series with a 

capacitor C and a pure resistor R. Calculate the values of C and R so that currents 

in either branch are equal but differ in phase by 90°. 

 

(7M) 

  UNIT-V  

9. A resistor of 20 Ω connected across a – b for the circuit shown below, draws 

maximum power from the circuit and the power drawn is 100W. i) Find the value 

of R and I1. ii) With 20 Ω across a- b find the value of I1 such that power 

transferred to it is 0 W.  

 

(14M) 

  Or  

10. a) State and explain Thevenin’s theorem. (7M) 

 b) Find the power dissipated in the resistor R2 for the circuit shown below by 

applying superposition theorem 

 
 

(7M) 
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